我在基于吸墨纸的R中做了一个简单的回测,发现它非常慢。有没有办法加快速度?并行处理有帮助吗?或者包裹是否仍在开发中并将进行改进?
我在哪里可以看看吸墨纸的源代码?
由于
整个系统:
library(quantmod)
library(TTR)
library(blotter) # r-forge revision 193
library(PerformanceAnalytics)
# Set initial values
initDate='2002-07-31'
endDate='2009-10-31'
initEq=100000
# Set currency and instruments
currency("USD")
stock("IEF",currency="USD",multiplier=1)
stock("SPY",currency="USD",multiplier=1)
stock("TLT",currency="USD",multiplier=1)
# Load data with quantmod
print("Loading data")
symbols = c("IEF", "SPY","TLT")
getSymbols(symbols, from=initDate, to=endDate, index.class=c("POSIXt","POSIXct"))
# Adjust prices for splits/dividends (thanks pg)
#IEF = adjustOHLC(IEF)
#SPY = adjustOHLC(SPY)
# Convert data to monthly frequency (to.weekly() needs drop.time=FALSE)
#IEF = to.monthly(IEF, indexAt='endof')
#SPY = to.monthly(SPY, indexAt='endof')
#TLT = to.monthly(TLT, indexAt='endof')
# Set up indicators with TTR
print("Setting up indicators")
IEF$SMA = SMA(Cl(IEF), 200)
SPY$SMA = SMA(Cl(SPY), 200)
TLT$SMA = SMA(Cl(TLT), 200)
# Set up a portfolio object and an account object in blotter
initPortf(name='default', symbols=symbols, initDate=initDate)
initAcct(name='default', portfolios='default', initDate=initDate, initEq=initEq)
verbose = FALSE
# Create trades
for( i in 200:NROW(SPY) ) {
CurrentDate=time(SPY)[i]
equity = getEndEq(Account='default', CurrentDate)
for( symbol in symbols ) {
sym = get(symbol)
ClosePrice = as.numeric(Cl(sym[i,]))
Posn = getPosQty(Portfolio='default', Symbol=symbol, Date=CurrentDate)
UnitSize = as.numeric(trunc((equity/NROW(symbols))/ClosePrice))
# Position Entry (assume fill at close)
if( Posn == 0 ) {
# No position, so test to initiate Long position
if( Cl(sym[i,]) > sym[i,'SMA'] ) {
# Store trade with blotter
addTxn('default', Symbol=symbol, TxnDate=CurrentDate,
TxnPrice=ClosePrice, TxnQty=UnitSize, TxnFees=0, verbose=verbose)
}
} else {
# Have a position, so check exit
if( Cl(sym[i,]) < sym[i,'SMA'] ) {
# Store trade with blotter
addTxn(Portfolio='default', Symbol=symbol, TxnDate=CurrentDate,
TxnPrice=ClosePrice, TxnQty=-Posn, TxnFees=0, verbose=verbose)
}
}
} # End symbols loop
# Calculate P&L and resulting equity with blotter
updatePortf(Portfolio='default', Dates=CurrentDate)
updateAcct(name='default', Dates=CurrentDate)
updateEndEq(Account='default', Dates=CurrentDate)
} # End dates loop
# Buy and Hold cumulative equity
buyhold = exp(cumsum( ( 0.5*ROC(Cl(IEF)) + 0.5*ROC(Cl(SPY)) )[-1] ))
# Final values
cat('Tactical Asset Allocation Return: ',(getEndEq(Account='default', Date=CurrentDate)-initEq)/initEq,'\n')
cat('Buy and Hold Return: ',tail(buyhold,1)-1,'\n')
# Plot Strategy Summary
png(filename="20091118_blotter_strategy.png", 720, 720)
#charts.PerformanceSummary(ROC(getAccount('default')$TOTAL$End.Eq)[-1],main="Tactical Asset Allocation")
charts.PerformanceSummary(ROC(getAccount('default')$summary$End.Eq)[-1],main="Tactical Asset Allocation")
dev.off()
# Plot Buy and Hold Summary
png(filename="20091118_blotter_buyhold.png", 720, 720)
charts.PerformanceSummary(ROC(buyhold)[-1],main="Buy & Hold")
dev.off()
我的系统:i7-2630 2.0GHz 4GB内存
答案 0 :(得分:2)
您引用的blog post中的代码(在评论中)使用月度数据。您的代码使用每日数据。在样本期间,天数比有几个月多24天,因此期望您的代码延长24倍是合理的。
如blog post所述,如果您只想测试交易系统,则应使用quantstrat。它甚至提供a link to another post showing you how to test the same strategy using quantstrat。