我尝试过使用sftool
。并且使用多项式拟合(在sftool中)在表面拟合工具窗口中获得令人满意的拟合图。但是当我在多项式方程中使用系数(从sftool获得)并尝试绘图时 - 实现了与原始方程的偏差曲面图。
我发现问题是由Matlab cftool producing wrong coefficients
中讨论的截断系数问题引起的但上述链接的解决方案是2d曲线拟合,而不是3d表面拟合。
如何在3d情况下解决问题?
此外,还有其他合适的方法来适应我的数据(使用参数)吗?
我的数据是:
X =
[ 1.321 1.3307 1.3404 1.3534 1.3681 1.3799 1.3898 1.3973 1.4048 1.4123 1.4202 1.4272 1.4372 1.4493 1.4619 1.4749 1.4892 1.5043 1.5165 1.53 1.5447 1.5569 1.5607 1.5653 1.5703 ;
1.3375 1.3476 1.3602 1.3715 1.3824 1.3933 1.4041 1.4158 1.427 1.4387 1.4483 1.4563 1.465 1.4734 1.4809 1.4885 1.4968 1.504 1.5132 1.5178 1.5237 1.5283 1.5392 1.5527 1.5707 ;
1.2998 1.3121 1.323 1.3335 1.3487 1.3639 1.3752 1.384 1.3929 1.4008 1.4084 1.4147 1.4214 1.4293 1.4397 1.4519 1.4644 1.4778 1.4882 1.4987 1.5079 1.5196 1.5305 1.5418 1.5704 ];
Y =
[ 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 18.301 ;
18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 18.5185 ;
18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 18.8261 ];
Z =
[ 1.0515 1.0773 1.103 1.1459 1.2489 1.4034 1.6953 1.9528 2.2189 2.485 2.7425 3.0086 3.2661 3.4464 3.5923 3.7124 3.8155 3.9099 3.9871 4.0644 4.1245 4.1588 4.1674 4.1931 4.1931 ;
1.0086 1.0343 1.103 1.1803 1.3348 1.5494 1.7983 2.0815 2.3906 2.6652 2.8712 3.0086 3.1974 3.3691 3.4464 3.5579 3.6781 3.7382 3.824 3.8927 3.9356 3.9957 4.0901 4.1416 4.2275 ;
1.3519 1.3348 1.3777 1.3777 1.3605 1.3691 1.412 1.4635 1.5236 1.5923 1.6781 1.7811 1.8755 2.03 2.2361 2.4506 2.691 2.9227 3.0944 3.2747 3.4034 3.5579 3.6867 3.824 4.03 ];
答案 0 :(得分:0)
您引用的问题中OP的解决方案是不使用cftool
生成的系数。相反,OP必须使用polyfit
明确计算它们。你不能使用polyfit工具来解决你的3D问题,虽然快速谷歌搜索“Matlab Polyfit 3d”的第一个命中this discussion,它应该拥有你解决问题所需的一切。