使用D& C / Recursion的最大子阵列

时间:2012-08-15 02:16:28

标签: java algorithm recursion divide-and-conquer kadanes-algorithm

我想用展示(n log n)的算法实现最大子阵列问题:

找出最大的连续子数组,或数组中连续元素的最大总和。

假设:并非所有元素都是负数


我有点工作的解决方案;问题在于重叠的中心数组,以及指定重叠子问题的适当索引,一些数组我得到正确答案而不是其他问题。


仅供比较&为了获得正确性,我实施了一种称为Kadane算法的解决方案 (我相信复杂性是Omega(n))。

这是Kandane的算法(http://en.wikipedia.org/wiki/Maximum_subarray_problem):


 public static void Kadane(int array[]) {
        int max_ending_here = 0;
        for (int i = 0; i < array.length; i++) {
            max_ending_here = max_ending_here + array[i];
            max_so_far = Math.max(max_so_far, max_ending_here);
        }
        System.out.println("Kadane(int array []): " + max_so_far);
    }

我的递归实现,使用divide&amp;征服比较子数组的最大值,然后对具有最大值的子数组进行递归调用,直到递归结束

public static void findMaxSubArray(int[] array, int lowIndex, int highIndex) {

        int mid = 0;
        int arrayLength = 0;
        int maxEndingHere = 0;

        if (array == null) {
            throw new NullPointerException();
        } else if 
                //base condition 
           (array.length < 2 || (highIndex==lowIndex)) {
            maxLowIndex = lowIndex;
            maxHighIndex = highIndex;
            System.out.println("findMaxSubArray(int[] array, int lowIndex, int highIndex)");
            System.out.println("global Max Range, low:" + maxLowIndex + " high: " + maxHighIndex);
            System.out.println("global Max Sum:" + globalMaximum);
        } else {
            System.out.println();
            int lowMidMax = 0;
            int midHighMax = 0;
            int centerMax = 0;
            //array length is always the highest index +1 
            arrayLength = highIndex + 1;

            //if even number of elements in array 
            if (array.length % 2 == 0) {
                mid = arrayLength / 2;
                System.out.println("low: " + lowIndex + " mid: " + mid);
                for (int i = lowIndex; i < mid; i++) {
                    System.out.print(array[i] + ",");
                }
                //calculate maximum contigous array encountered so far in low to mid indexes 
                for (int i = lowIndex; i < mid; i++) {
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) {
                        maxEndingHere = 0;
                    }

                    if (globalMaximum < maxEndingHere) {
                        //new maximum found 
                        globalMaximum = lowMidMax = maxEndingHere;
                        lowIndex = i;
                    }

                }
                //end low mid calc 

                for (int i = mid; i <= highIndex; i++) {
                    System.out.print(array[i] + ",");
                }
                System.out.println("mid: " + mid + " high: " + highIndex);
                //calculate maximum contigous array encountered so far in mid to high indexes 
                for (int i = mid; i <= highIndex; i++) {
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) {
                        maxEndingHere = 0;
                    }

                    if (globalMaximum < maxEndingHere) {
                        //new maximum found 
                        globalMaximum = midHighMax = maxEndingHere;
                        mid = i;
                    }

                }
//end mid high calc
                //calculate maximum contigous array encountered so far in center array
                int lowCenter = mid -1;
                int highCenter = highIndex -1;

                System.out.println("lowCenter: " + lowCenter + " highCenter: " + highCenter);
                for (int i = lowCenter; i < highCenter; i++) {
                    System.out.print(array[i] + ",");
                }
                //calculate maximum contigous array encountered so far in low to mid indexes 
                for (int i = lowCenter; i < highCenter; i++) {
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) {
                        maxEndingHere = 0;
                    }

                    if (globalMaximum < maxEndingHere) {
                        //new max found
                        globalMaximum = centerMax = maxEndingHere;
                        lowCenter = i;

                    }

                }
                //end center calc 
                //determine which range contains the maximum sub array 
                //if lowMidMax <= midHighMax and centerMax
                if (lowMidMax >= midHighMax && lowMidMax >= centerMax) {
                    maxLowIndex = lowIndex;
                    maxHighIndex = mid;
                    //recursive call
                    findMaxSubArray(array, lowIndex, mid);
                }
                if (midHighMax >= lowMidMax && midHighMax >= centerMax) {
                    maxLowIndex = mid;
                    maxHighIndex = highIndex;
                    //recursive call
                    findMaxSubArray(array, mid, highIndex);
                }
                if (centerMax >= midHighMax && centerMax >= lowMidMax) {
                    maxLowIndex = lowCenter;
                    maxHighIndex = highCenter;
                    //recursive call
                    findMaxSubArray(array, lowCenter, highCenter);
                }

            }//end if even parent array 
            //else if uneven array 
            else {
                mid = (int) Math.floor(arrayLength / 2);
                System.out.println("low: " + lowIndex + " mid: " + mid);
                for (int i = lowIndex; i < mid; i++) {
                    System.out.print(array[i] + ",");
                }
                //calculate maximum contigous array encountered so far in low to mid indexes 
                for (int i = lowIndex; i < mid; i++) {
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) {
                        maxEndingHere = 0;
                    }

                    if (globalMaximum < maxEndingHere) {
                        //new maximum found 
                        globalMaximum = lowMidMax = maxEndingHere;
                        lowIndex = i;
                    }

                }
                //end low mid calc
                System.out.println("mid+1: " + (mid + 1) + " high: " + highIndex);
                for (int i = mid + 1; i <= highIndex; i++) {
                    System.out.print(array[i] + ",");
                }
                //calculate maximum contigous array encountered so far in mid to high indexes 
                for (int i = mid + 1; i <= highIndex; i++) {
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) {
                        maxEndingHere = 0;
                    }

                    if (globalMaximum < maxEndingHere) {
                        //new maximum found 
                        globalMaximum = midHighMax = maxEndingHere;
                        mid = i;
                    }

                }
                //end mid high calc
                //calculate maximum contigous array encountered so far in center array
                int lowCenter =  mid;
                int highCenter = highIndex -1;

                System.out.println("lowCenter: " + lowCenter + " highCenter: " + highCenter);
                for (int i = lowCenter; i < highCenter; i++) {
                    System.out.print(array[i] + ",");
                }
                //calculate maximum contigous array encountered so far in low to mid indexes 
                for (int i = lowCenter; i < highCenter; i++) {
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) {
                        maxEndingHere = 0;
                    }

                    if (globalMaximum < maxEndingHere) {
                        //new max
                        globalMaximum = centerMax = maxEndingHere;
                        lowCenter = i;
                    }

                }
                //end center calc 

                //determine which range contains the maximum sub array 
                //if lowMidMax <= midHighMax and centerMax
                  if (lowMidMax >= midHighMax && lowMidMax >= centerMax) {
                    maxLowIndex = lowIndex;
                    maxHighIndex = mid;
                    //recursive call
                    findMaxSubArray(array, lowIndex, mid);
                }
                if (midHighMax >= lowMidMax && midHighMax >= centerMax) {
                    maxLowIndex = mid;
                    maxHighIndex = highIndex;
                    //recursive call
                    findMaxSubArray(array, mid, highIndex);
                }
                if (centerMax >= midHighMax && centerMax >= lowMidMax) {
                    maxLowIndex = lowCenter;
                    maxHighIndex = highCenter;
                    //recursive call
                    findMaxSubArray(array, lowCenter, highCenter);
                }


            }//end odd parent array length 
        }//end outer else array is ok to computed 

    }//end method

结果:使用数组subArrayProblem1 = {1,2,3,4,5,6,7,8};

Kadane(int array []):36 低:0中:4 1,2,3,4,5,6,7,8,中:4高:7 lowCenter:6 highCenter:6

findMaxSubArray(int [] array,int lowIndex,int highIndex) 全局最大范围,低:7高:7 全球最高金额:36 建立成功(总时间:0秒)

问题虽然与Kadane相比,全局最大总和是正确的,但是低指数&amp;高指数范围反映了最后一次重复调用。

结果:使用数组subArrayProblem = {100,113,110,85,105,102,86,63,81,101,94,106,101,79,94,90,97};

Kadane(int array []):1607 低:0中:8 100,113,110,85,105,102,86,63,中+ 1:9高:16 101,94,106,101,79,94,90,97,lowCenter:16 highCenter:15

findMaxSubArray(int [] array,int lowIndex,int highIndex) 全局最大范围,低:16高:16 全球最大总和:1526

全局最大值不正确,注意差异实际上是1个元素,即元素81

3 个答案:

答案 0 :(得分:1)

1. Kadane算法的实现是错误的,它会在带有一些负数的数组上失败。 正确的应该是这样的:

 public static void Kadane(int array[]) {
        int max_ending_here = 0;
        for (int i = 0; i < array.length; i++) {
            max_ending_here = Math.max(array[i], max_ending_here + array[i]);
            max_so_far = Math.max(max_so_far, max_ending_here);
        }
        System.out.println("Kadane(int array []): " + max_so_far);
    }

您的代码中存在许多错误,例如:

2.在计算答案之前,maxEndingHere应初始化为0:

[lowIndex,mid)
[mid, highIndex]
[lowCenter, highCenter]

现在它只在第一次迭代之前被初始化。

3. lowCenter应初始化为lowIndex

4.该程序不必要地冗长而复杂......我不知道我是否错过了任何错误......

答案 1 :(得分:1)

解决方案非常简单,pv是一个变量,它向我们展示了从k开始的子数组的总和,其中0 <= k <= n-1到我们在第i次迭代中访问的变量。数组s让我们跟踪最大子数组,s [i]也是在第i次迭代中找到的最大子数组。 c是原始数组。 p是指向在第i次迭代中找到的最大子数组的开始的指针。 tp是将p更新为正确值的临时指针

/**
 * @author : Yash M. Sawant
 */




#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAXLENGTH 17
#define MINVALUE -999



int main() {
    int i;

    int s[MAXLENGTH]; s[0] = 0;
    int c[MAXLENGTH] = {0, 13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7};
    int pv = 0, p = -1, tp = -1;
    for(i = 1 ; i < MAXLENGTH ; i ++) {
        printf("%4d ", c[i]);
        if(s[i - 1] < pv + c[i]) {
            s[i] = pv + c[i];
            pv = pv + c[i];
            if(tp > p) {
                p = tp;
            }
        } else {
            s[i] = s[i - 1];
            pv = pv + c[i];
            if(pv < 0) {
                pv = 0; tp = i;
            }
        }
    }
    printf("\n");
    for(i = 0 ; i < MAXLENGTH ; i ++) {
        printf("%4d ", s[i]);
    }
    printf("\n");
    printf("Max Sub Array = %d and Starts at %d ", s[MAXLENGTH - 1], p);
    return 0;

}

答案 2 :(得分:1)

更干净的方法来找到具有最大和的子数组(D / C递归方法):

MATCH()