使用标准的haskell泛型库进行类型化同构

时间:2012-08-09 16:18:22

标签: generics haskell ghc haskell-platform

仅在Haskell平台(sybData.TypeableData.DataGHC.Generics)中就有几个具有大量重叠模块的泛型库,但我遇到了麻烦有一个非常基本的通用编程任务。

我希望能够在相同形状的类型之间进行转换,即我希望在同构类型之间使用多态,类型转换函数,基本上是在this paper(PDF)末尾提供的索引类型族被提及。

我并不关心废弃我的样板,而是能够围绕总和和产品抽象构建新的库。

以下问题是GHC.Generic我认为最接近我需要的问题,但欢迎其他解决方案。


以下两种类型具有相同的形状

data Pair = Pair Char Int deriving (Generic, Show)
data Pair2 = Pair2 Char Int deriving (Generic, Show)

我想使用GHC.Generics在它们之间转换值。由于所有幻像参数和其他无意义,以下内容未能进行类型检查:

f :: Pair -> Pair2
f = to . from

最终我想要一个类似于fromInteger的函数,它具有任何Generic(或任何其他类可以支持此实例)实例的多态返回值。我想我正在寻找像GHC.Generics

这样的东西
--class:
type family NormalForm a
class ToGeneric a where
    to :: a -> NormalForm a
class FromGeneric b where
    from :: NormalForm b -> b

--examples:
data A = A Char Int deriving Show
data B = B Char Int deriving Show

type instance NormalForm A = (Char,Int)
instance ToGeneric A where
    to (A a b) = (a,b)
instance FromGeneric A where
    from (a,b) = A a b

type instance NormalForm B = (Char,Int)
instance ToGeneric B where
    to (B a b) = (a,b)
instance FromGeneric B where
    from (a,b) = B a b

-- the function I'm looking for
coerce :: (ToGeneric a, FromGeneric b, NormalForm a ~ NormalForm b)=> a -> b
coerce = from . to

通过以上我们可以做我想做的一切:

*Main> (coerce $A 'a' 1) :: B
B 'a' 1
*Main> (coerce $A 'a' 1) :: A
A 'a' 1

编辑:这实际上是Nathan Howell的f函数似乎在下面工作的方式。

问题

  1. 这可能与目前在haskell平台上的库有关吗?

  2. 如果没有,是否可以定义一个库,利用derivingGeneric等现有的Data机制,而无需诉诸TH?

2 个答案:

答案 0 :(得分:9)

这是可能的,而且相对无痛。与直接使用unsafeCoerce不同,如果类型不对齐,您将获得构建中断。您可以依赖f上的等式约束来提供足够的编译时类型安全性以使用unsafeCoerce并避免使用Rep系列。

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE TypeFamilies #-}

import GHC.Generics

data Pair1 = Pair1 Char Int deriving (Generic, Show)
data Pair2 = Pair2 Char Int deriving (Generic, Show)

data Triple1 = Triple1 Char Int Double deriving (Generic, Show)
data Triple2 = Triple2 Char Int Double deriving (Generic, Show)

f :: (Generic a, Generic c, Rep a ~ D1 da (C1 ca f), Rep c ~ D1 db (C1 cb f))
  => a -> c
f = to . M1 . M1 . unM1 . unM1 . from
-- this might also be acceptable:
-- f = unsafeCoerce

p1 :: Pair1 -> Pair2
p1 = f

p2 :: Pair2 -> Pair1
p2 = f

t1 :: Triple1 -> Triple2
t1 = f

t2 :: Triple2 -> Triple1
t2 = f

运行它会产生预期的结果:

*Main> p1 $ Pair1 'x' 1
Pair2 'x' 1
*Main> p2 $ Pair2 'x' 1
Pair1 'x' 1
*Main> t1 $ Triple1 'y' 2 3.0
Triple2 'y' 2 3.0
*Main> t2 $ Triple2 'y' 2 3.0
Triple1 'y' 2 3.0

答案 1 :(得分:4)

如果“具有相同形状”意味着数据类型等于构造函数名称,记录选择器和类型同义词,那么数据类型转换就像遍历表示一样简单。

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleContexts, FlexibleInstances #-}

import GHC.Generics

conv
  :: (Generic a, Generic b, Conv (Rep a) (Rep b))
  => a -> b
conv = to . cv . from

class Conv a b where
  cv :: a x -> b x

-- skip irrelevant parts: datatype name, constructor name, selector
instance Conv f1 f2 => Conv (M1 i1 c1 f1) (M1 i2 c2 f2) where
  cv = M1 . cv . unM1

instance (Conv a1 a2, Conv b1 b2) => Conv (a1 :*: b1) (a2 :*: b2) where
  cv ~(a :*: b) = cv a :*: cv b

instance (Conv a1 a2, Conv b1 b2) => Conv (a1 :+: b1) (a2 :+: b2) where
  cv (L1 a) = L1 $ cv a
  cv (R1 b) = R1 $ cv b

-- copy values
instance Conv U1 U1 where cv = id
instance Conv (K1 R c) (K1 R c) where cv = id

测试用例:

data A = A1 String Int | A2 (Int,Int) deriving (Generic, Show)
data B = B1 [Char] Int | B2 { xy :: (Int,Int) } deriving (Generic, Show)
data X = X Int Int deriving (Generic, Show)

*Main> conv $ X 3 14 :: (Int,Int)
(3,14)
*Main> conv $ A1 "hello" 42 :: B
B1 "hello" 42
*Main> conv $ A2 (13,42) :: B
B2 {xy = (13,42)}

更新

更多实例允许更有趣的转换:

instance Conv U1 (M1 S s (K1 R ())) where
  cv _ = M1 $ K1 ()
-- *> conv (Nothing :: Maybe Int) :: Either () Int
-- Left ()

instance Conv (M1 S s (K1 R ())) U1 where
  cv _ = U1
-- *> conv (Left () :: Either () Int) :: Maybe Int
-- Nothing

-- this one requires OverlappingInstances
instance (Generic c1, Generic c2, Conv (Rep c1) (Rep c2))
  => Conv (K1 R c1) (K1 R c2)
  where
    cv (K1 x) = K1 $ conv x
 -- *> conv (Right Nothing :: Either () (Maybe Int)) :: Maybe (Either () Int)
 -- Just (Left ())

 -- data List a = Empty | Cons a (List a) deriving (Generic, Show)
 -- *> conv [1,2,3::Int] :: List Int
 -- Cons 1 (Cons 2 (Cons 3 Empty))