我正在尝试采用位置网格,然后计算每个像素的标准化距离。我不确定这是否是正确的方法:
clear all;
im = imread('test1.png'); % read in the image
im = im(:,:,1); %vectorize image
n = size(im,1); % No of grids in the X-Y plane
xp(1:n)=1:1:n; % Y-coordinates of the plane where we are interested
yp(1:n)=1:1:n;% X-coordinates of the plane where we are interested
Y(1:n,1:n)=0; % This array is for 1-d to 2-d conversion of coordinates
X(1:n,1:n)=0;
for i=1:n
Y(i,:)=yp(i); % all y-coordinates value in 2-d form
end
for i=1:n
X(:,i)=xp(i);% all x-coordinates value in 2-d form
end
Z = zeros(size(X)); % Z dimension is appended to 0
pos = [X(:),Y(:),Z(:)]; %position co-ordinates for x y z dimensions
N = size(pos,1); % size of position matrix
v = cell(N,1); %define cell for storage of x-y plane direction vectors
for j = 1:N
for i = 1:N
vecdir(i,:) = pos(i,:) - pos(j,:); %direction of vectors between each point in the x-y plane
dist(i,:) = pdist2(pos(i,:),pos(j,:)); %distance between each point in the x-y plane
norm(i,:) = vecdir(i,:)./(dist(i,:)).^2; %normalised distance between each point in the x-y plane
end
v{j} = vecdir;
d{j} = dist;
r{j} = norm; %store normalised distances into a cell array
end
R = cellfun(@isnan,r,'Un',0);
for ii = 1:length(r)
r{ii}(R{ii}) =0;
end
如果我拍摄3x3图像中的第一个像素(尺寸(im)),我会得到所有其他像素的标准化距离(x y z位置格式):
>> r{1}
ans =
0 0 0
0 1.0000 0
0 0.5000 0
1.0000 0 0
0.5000 0.5000 0
0.2000 0.4000 0
0.5000 0 0
0.4000 0.2000 0
0.2500 0.2500 0
我只是想知道我是否以正确的方式这样做(在这个阶段对效率不太感兴趣)
答案 0 :(得分:1)
不是问题的答案,而是关于代码的评论:
使用meshgrid可以更轻松地完成xp
,yp
,X
和Y
的初始化:
xp=1:n;
yp=xp;
[X,Y]=meshgrid(xp,yp);
关于问题本身:
vecdir(i,:) = pos(i,:) - pos(j,:); %direction of vectors between each point in the x-y plane
dist(i,:) = pdist2(pos(i,:),pos(j,:)); %distance between each point in the x-y plane
norm(i,:) = vecdir(i,:)./(dist(i,:)).^2; %normalised distance between each point in the x-y plane
我不会将'norm'用作变量名,因为它也是function
vecdir
是正确的; dist
也是,但实际上,它应该与norm(vecdir(i,:),2)
(函数norm()
相同,而不是您的变量!)
应用这个yiels:
vecdir(i,:) = pos(i,:) - pos(j,:);
normvec = vecdir(i,:)./norm(vecdir(i,:),2);
是imo how you usually normalize a vector。当然,你得到了正确的结果,但由于你已经有了距离向量,因此没有必要使用pdist2
,你只需要将其标准化。