我在R中有一个非常大的数据框,并希望为其他列中的每个不同值总和两列,例如说我们在一天内在各个商店中拥有交易数据帧的数据,如下所示
shop <- data.frame('shop_id' = c(1, 1, 1, 2, 3, 3),
'shop_name' = c('Shop A', 'Shop A', 'Shop A', 'Shop B', 'Shop C', 'Shop C'),
'city' = c('London', 'London', 'London', 'Cardiff', 'Dublin', 'Dublin'),
'sale' = c(12, 5, 9, 15, 10, 18),
'profit' = c(3, 1, 3, 6, 5, 9))
是:
shop_id shop_name city sale profit
1 Shop A London 12 3
1 Shop A London 5 1
1 Shop A London 9 3
2 Shop B Cardiff 15 6
3 Shop C Dublin 10 5
3 Shop C Dublin 18 9
我想总结每家商店的销售和利润:
shop_id shop_name city sale profit
1 Shop A London 26 7
2 Shop B Cardiff 15 6
3 Shop C Dublin 28 14
我目前正在使用以下代码执行此操作:
shop_day <-ddply(shop, "shop_id", transform, sale=sum(sale), profit=sum(profit))
shop_day <- subset(shop_day, !duplicated(shop_id))
工作得非常好,但正如我所说的我的数据帧很大(140,000行,37列和近100,000个我想要求和的唯一行)并且我的代码需要很长时间才能运行,然后最终说它已经耗尽内存
有没有人知道最有效的方法。
提前致谢!
答案 0 :(得分:15)
**强制性数据表答案**
> library(data.table)
data.table 1.8.0 For help type: help("data.table")
> shop.dt <- data.table(shop)
> shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id']
shop_id sale profit
[1,] 1 26 7
[2,] 2 15 6
[3,] 3 28 14
>
在事情变得更大之前听起来不错......
shop <- data.frame(shop_id = letters[1:10], profit=rnorm(1e7), sale=rnorm(1e7))
shop.dt <- data.table(shop)
> system.time(ddply(shop, .(shop_id), summarise, sale=sum(sale), profit=sum(profit)))
user system elapsed
4.156 1.324 5.514
> system.time(shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id'])
user system elapsed
0.728 0.108 0.840
>
如果使用密钥创建data.table,则可以获得额外的速度提升:
shop.dt <- data.table(shop, key='shop_id')
> system.time(shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id'])
user system elapsed
0.252 0.084 0.336
>
答案 1 :(得分:3)
以下是如何使用基数R来加速这样的操作:
idx <- split(1:nrow(shop), shop$shop_id)
a2 <- data.frame(shop_id=sapply(idx, function(i) shop$shop_id[i[1]]),
sale=sapply(idx, function(i) sum(shop$sale[i])),
profit=sapply(idx, function(i) sum(shop$profit[i])) )
对于我系统上的ddply汇总版本,时间减少到0.75秒对5.70秒。
答案 2 :(得分:0)
我认为最简单的方法是在dplyr
library(dplyr)
shop %>%
group_by(shop_id, shop_name, city) %>%
summarise_all(sum)
答案 3 :(得分:0)
以防万一,如果您有很长的列列表, 使用summary_if()
library(dplyr)
shop %>%
group_by(shop_id, shop_name, city) %>%
summarise_if(is.integer, sum)