每次递归都可以改为迭代吗?

时间:2012-07-29 11:34:03

标签: c recursion iteration

每个递归函数是否可以转换为迭代?递归函数应该具有什么特性才能使用迭代实现?

我一直在尝试使用迭代来定义以下函数,但似乎是不行!它应该探索迷宫中的所有路径(节点)。任何人都可以使用迭代重写这个吗?如果不可能,为什么不呢?

typedef int[0,99] id_t;
bool visited[id_t];
int path[id_t];
int pathCounter = 0;

struct { 
    id_t id;
    bool free;
    int neighborNode[4];
} nodeMap[id_t];

void findPath(int current){
    visited[current] = true;
    for (i : int[0, 3]){
        if(nodeMap[nodeMap[current].neighborNode[i]].free == true && visited[nodeMap[current].neighborNode[i]] == false && nodeMap[current].neighborNode[i] != -1){
        path[pathCounter] = nodeMap[nodeMap[current].neighborNode[i]].id;
        pathCounter++;
        findPath(nodeMap[current].neighborNode[i]);
        path[pathCounter] = nodeMap[current].id;
        pathCounter++;      
        }
    }
    path[0] = current;
}

扩展:是否可以将提到的递归函数转换为迭代而不实现自己的堆栈?其中一个答案表明,每个尾递归函数都可以使用堆栈结构转换为迭代而不用 ...如果是这样,每个递归函数是否可以转换为尾递归?怎么样?

5 个答案:

答案 0 :(得分:7)

是的,每个递归函数都可以通过一个相当机械的过程转换为迭代函数。

回想一下,编译器通过使用堆栈实现递归,堆栈通常在CPU的硬件中实现。您可以构建自己的软件堆栈,使其适合于保持函数的状态(即其局部变量),将初始状态推送到该堆栈,并编写一个while循环,将新状态推送到堆栈而不是进行递归调用,弹出堆栈而不是返回,并在堆栈不为空时继续进程。

答案 1 :(得分:4)

通常可以将任何递归算法转换为循环。方法很简单:我们可以模仿编译器如何为函数调用生成代码:进入函数,从函数返回,继续执行。

要将递归函数转换为迭代循环,您可以:

  • 定义一条记录,该记录存储函数和局部变量的参数。这相当于堆栈框架。
  • 定义一个堆栈,记录推送的堆栈。这类似于程序堆栈。
  • 调用函数时,创建参数和局部变量的当前值的记录并推送到堆栈。
  • 从函数返回时,从堆栈弹出并用记录中的值覆盖当前值。

上面的整个过程是在while循环中完成的,当堆栈为空时将退出

答案 2 :(得分:3)

与已经陈述的其他答案一样,技术上可以通过模拟堆栈来实现。但我猜你不想这样做。您可能想要一个不使用堆栈的迭代解决方案。如果是这种情况,你需要有一个尾递归函数。 AFAIR是唯一可行的方式。您可以将每个尾递归函数重写为命令式函数,而无需模拟堆栈。

答案 3 :(得分:0)

如果你有一个简单的“尾部”递归,那么你可以使用一个循环(例如阶乘函数)。在更复杂的函数中,您必须使用stack结构和while (!stack.empty())循环。但是,如果您有非常复杂的递归,例如Towers of HanoiMerge Sortprinting truth table,则必须使用带有stack循环的while之前,但使用switch语句来确定当前的呼叫状态。

<强>递归:

void mergeSort(int start, int end)
{
    if (start < end)
    {
         mergeSort(start, (start + end) / 2);
         mergeSort((start + end) / 2 + 1, end);
         Merge(start, end);
    }

}

<强>迭代:

void mergeSort()
{
  stack<int> st;
  st.push(1);
  int status;

  while (!st.empty())
  {
      status = st.pop();
      switch (status)
      {
        case 1:
             ....
            break;
        case 2:
             break;
      }
  }
}

我强烈推荐this excellent pdf,详细解释了这个过程。

答案 4 :(得分:-2)

根据http://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursion_versus_iteration,所有递归定义的函数都可以转换为迭代函数。