我正在尝试在Android上开发人脸识别应用程序,因为我不想在项目中使用NDK(根本没有时间切换),我坚持开发整个应用程序Java及其我遇到了一些问题:
似乎Contrib模块未包含在OpenCV 2.4.2中。无论如何在项目中使用它?
我尝试使用JavaCV来使用Contrib Module的“FaceRecognizer”类。有两个类可用,称为“FaceRecognizer”& “FaceRecognizerPtr”。有谁知道这两者之间的区别是什么?
上面提到的类有一个名为“Train”的方法,它在(C ++中)接收两个类型为“Mat&amp; Integer”(model->train(images,labels) & train(Vector<mat> theImages, Vector<int> theLabels
)的向量。我尝试在Java中传递它们ArrayList<mat> & ArrayList<integer>
和向量,但似乎该方法显式接受了“CvArr”数据类型,我不确定如何获取...这是错误:
该类型的方法训练(opencv_core.CvArr,opencv_core.CvArr) opencv_contrib.FaceRecognizer不适用于参数 (ArrayList,ArrayList)
有谁知道如何将我的ArrayList更改为CvArr?!
这是我的第一篇文章,我不确定是在一个帖子还是在三个帖子中提出所有三个问题,对于给您带来的任何不便表示遗憾...如果您需要有关该项目的任何其他信息,请随时提出。
答案 0 :(得分:14)
下面的文章是由Petter Christian Bjelland撰写的,所以所有的功劳都是他的。我在这里发帖,因为他的博客目前似乎处于维护模式,但我认为值得分享。
我找不到任何关于如何使用OpenCV和Java进行人脸识别的教程,所以我决定在这里分享一个可行的解决方案。该解决方案目前的形式非常低效,因为培训模型是在每次运行时构建的,但它显示了使其运行所需的内容。
下面的类有两个参数:包含训练面的目录的路径以及要分类的图像的路径。并非所有图像都必须具有相同的尺寸,并且必须从原始图像中裁剪出面部(如果尚未进行面部检测,请查看此处)。
为了简化本文,该课程还要求培训图像具有文件名格式:<label>-rest_of_filename.png
。例如:
1-jon_doe_1.png 1-jon_doe_2.png 2-jane_doe_1.png 2-jane_doe_2.png
......等等。
代码:
import com.googlecode.javacv.cpp.opencv_core;
import static com.googlecode.javacv.cpp.opencv_highgui.*;
import static com.googlecode.javacv.cpp.opencv_core.*;
import static com.googlecode.javacv.cpp.opencv_imgproc.*;
import static com.googlecode.javacv.cpp.opencv_contrib.*;
import java.io.File;
import java.io.FilenameFilter;
public class OpenCVFaceRecognizer {
public static void main(String[] args) {
String trainingDir = args[0];
IplImage testImage = cvLoadImage(args[1]);
File root = new File(trainingDir);
FilenameFilter pngFilter = new FilenameFilter() {
public boolean accept(File dir, String name) {
return name.toLowerCase().endsWith(".png");
}
};
File[] imageFiles = root.listFiles(pngFilter);
MatVector images = new MatVector(imageFiles.length);
int[] labels = new int[imageFiles.length];
int counter = 0;
int label;
IplImage img;
IplImage grayImg;
for (File image : imageFiles) {
// Get image and label:
img = cvLoadImage(image.getAbsolutePath());
label = Integer.parseInt(image.getName().split("\\-")[0]);
// Convert image to grayscale:
grayImg = IplImage.create(img.width(), img.height(), IPL_DEPTH_8U, 1);
cvCvtColor(img, grayImg, CV_BGR2GRAY);
// Append it in the image list:
images.put(counter, grayImg);
// And in the labels list:
labels[counter] = label;
// Increase counter for next image:
counter++;
}
FaceRecognizer faceRecognizer = createFisherFaceRecognizer();
// FaceRecognizer faceRecognizer = createEigenFaceRecognizer();
// FaceRecognizer faceRecognizer = createLBPHFaceRecognizer()
faceRecognizer.train(images, labels);
// Load the test image:
IplImage greyTestImage = IplImage.create(testImage.width(), testImage.height(), IPL_DEPTH_8U, 1);
cvCvtColor(testImage, greyTestImage, CV_BGR2GRAY);
// And get a prediction:
int predictedLabel = faceRecognizer.predict(greyTestImage);
System.out.println("Predicted label: " + predictedLabel);
}
}
该类需要OpenCV Java接口。如果您正在使用Maven,则可以使用以下pom.xml检索所需的库:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.pcbje</groupId>
<artifactId>opencvfacerecognizer</artifactId>
<version>0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>opencvfacerecognizer</name>
<url>http://pcbje.com</url>
<dependencies>
<dependency>
<groupId>com.googlecode.javacv</groupId>
<artifactId>javacv</artifactId>
<version>0.3</version>
</dependency>
<!-- For Linux x64 environments -->
<dependency>
<groupId>com.googlecode.javacv</groupId>
<artifactId>javacv</artifactId>
<classifier>linux-x86_64</classifier>
<version>0.3</version>
</dependency>
<!-- For OSX environments -->
<dependency>
<groupId>com.googlecode.javacv</groupId>
<artifactId>javacv</artifactId>
<classifier>macosx-x86_64</classifier>
<version>0.3</version>
</dependency>
</dependencies>
<repositories>
<repository>
<id>javacv</id>
<name>JavaCV</name>
<url>http://maven2.javacv.googlecode.com/git/</url>
</repository>
</repositories>
</project>
引用http://answers.opencv.org/question/865/the-contrib-module-problem上的回复。
如果没有使用过javacv,让我们看看只需看看界面我们能走多远!该项目位于googlecode上,可以轻松浏览代码:http://code.google.com/p/javacv。
首先看一下cv::FaceRecognizer
的包裹方式(opencv_contrib.java, line 845 at time of writing this):
@Namespace("cv") public static class FaceRecognizer extends Algorithm {
static { Loader.load(); }
public FaceRecognizer() { }
public FaceRecognizer(Pointer p) { super(p); }
public /*abstract*/ native void train(@ByRef MatVector src, @Adapter("ArrayAdapter") CvArr labels);
public /*abstract*/ native int predict(@Adapter("ArrayAdapter") CvArr src);
public /*abstract*/ native void predict(@Adapter("ArrayAdapter") CvArr src, @ByRef int[] label, @ByRef double[] dist);
public native void save(String filename);
public native void load(String filename);
public native void save(@Adapter("FileStorageAdapter") CvFileStorage fs);
public native void load(@Adapter("FileStorageAdapter") CvFileStorage fs);
}
啊哈,所以你需要为图像传递MatVector
!您可以在CvArr
(一行或一列)中传递标签。 MatVector
在opencv_core, line 4629 (at time of writing this)中定义,如下所示:
public static class MatVector extends Pointer {
static { load(); }
public MatVector() { allocate(); }
public MatVector(long n) { allocate(n); }
public MatVector(Pointer p) { super(p); }
private native void allocate();
private native void allocate(@Cast("size_t") long n);
public native long size();
public native void resize(@Cast("size_t") long n);
@Index @ValueGetter public native @Adapter("MatAdapter") CvMat getCvMat(@Cast("size_t") long i);
@Index @ValueGetter public native @Adapter("MatAdapter") CvMatND getCvMatND(@Cast("size_t") long i);
@Index @ValueGetter public native @Adapter("MatAdapter") IplImage getIplImage(@Cast("size_t") long i);
@Index @ValueSetter public native MatVector put(@Cast("size_t") long i, @Adapter("MatAdapter") CvArr value);
}
再看看代码,我想它可以像这样使用:
int numberOfImages = 10;
// Allocate some memory:
MatVector images = new MatVector(numberOfImages);
// Then fill the MatVector, you probably want to do something useful instead:
for(int idx = 0; idx < numberOfImages; idx++){
// Load an image:
CvArr image = cvLoadImage("/path/to/your/image");
// And put it into the MatVector:
images.put(idx, image);
}
您可能想要自己编写一个方法来执行从Java ArrayList
到MatVector
的转换(如果javacv中还没有这样的函数)。
现在回答你的第二个问题。 FaceRecognizer
相当于cv::FaceRecognizer
。本机OpenCV C ++类返回cv::Ptr<cv::FaceRecognizer>
,它是cv::FaceRecognizer
的(智能)指针。这也必须包装好。看到这里的模式?
FaceRecognizerPtr
的界面现在看起来像这样:
@Name("cv::Ptr<cv::FaceRecognizer>")
public static class FaceRecognizerPtr extends Pointer {
static { load(); }
public FaceRecognizerPtr() { allocate(); }
public FaceRecognizerPtr(Pointer p) { super(p); }
private native void allocate();
public native FaceRecognizer get();
public native FaceRecognizerPtr put(FaceRecognizer value);
}
因此,您可以从此课程中获得FaceRecognizer
或将FaceRecognizer
放入其中。您应该只关注get()
,因为指针由创建具体FaceRecognizer
算法的方法填充:
@Namespace("cv") public static native @ByVal FaceRecognizerPtr createEigenFaceRecognizer(int num_components/*=0*/, double threshold/*=DBL_MAX*/);
@Namespace("cv") public static native @ByVal FaceRecognizerPtr createFisherFaceRecognizer(int num_components/*=0*/, double threshold/*=DBL_MAX*/);
@Namespace("cv") public static native @ByVal FaceRecognizerPtr createLBPHFaceRecognizer(int radius/*=1*/,
int neighbors/*=8*/, int grid_x/*=8*/, int grid_y/*=8*/, double threshold/*=DBL_MAX*/);
因此,一旦获得了FaceRecognizerPtr,您就可以执行以下操作:
// Holds your training data and labels:
MatVector images;
CvArr labels;
// Do something with the images and labels... Probably fill them?
// ...
// Then get a Pointer to a FaceRecognizer (FaceRecognizerPtr).
// Java doesn't have default parameters, so you have to add some yourself,
// if you pass 0 as num_components to the EigenFaceRecognizer, the number of
// components is determined by the data, for the threshold use the maximum possible
// value if you don't want one. I don't know the constant in Java:
FaceRecognizerPtr model = createEigenFaceRecognizer(0, 10000);
// Then train it. See how I call get(), to get the FaceRecognizer inside the FaceRecognizerPtr:
model.get().train(images, labels);
这会让你学会一个特征脸模型。就是这样!
答案 1 :(得分:3)
我使用opencv创建了一个Android应用程序进行人脸识别。为了获得良好的识别,您需要更好的检测,您可以从以下位置查看:https://github.com/yaylas/AndroidFaceRecognizer 我希望它有所帮助。