如何检查经度/纬度点是否在坐标范围内?

时间:2012-07-16 18:29:38

标签: php math geolocation coordinates latitude-longitude

我有一些构成多边形区域的经度和纬度坐标。我还有一个经度和纬度坐标来定义车辆的位置。如何检查车辆是否位于多边形区域内?

1 个答案:

答案 0 :(得分:8)

这实际上是球体上的Point in polygon问题。您可以修改光线投射算法,使其使用大圆弧而不是线段。

  1. 对于构成多边形的每对相邻坐标,在它们之间绘制一个很大的圆弧段。
  2. 选择不在多边形区域内的参考点。
  3. 绘制一个大圆段,从参考点开始到车辆终点。计算此段跨越多边形段的次数。如果总次数是奇数,则车辆在多边形内。如果均匀,车辆在多边形之外。
  4. 或者,如果坐标和车辆足够靠近,而不是靠近极点或国际日期线,您可以假装地球是平坦的,并使用经度和纬度作为简单的x和y坐标。这样,您可以将光线投射算法与简单的线段一起使用。如果你对非欧几里德几何不熟悉,这是更好的选择,但是你的多边形边界会有一些扭曲,因为弧会扭曲。

    编辑:关于球体几何的更多信息。

    可以通过垂直于圆所在平面的矢量来识别大圆(AKA,normal vector

    class Vector{
        double x;
        double y;
        double z;
    };
    
    class GreatCircle{
        Vector normal;
    }
    

    任何两个不是antipodal的纬度/经度坐标只分享一个大圆。要找到这个大圆,请将坐标转换为穿过地球中心的线。这两行的cross product是坐标大圆的法线向量。

    //arbitrarily defining the north pole as (0,1,0) and (0'N, 0'E) as (1,0,0)
    //lattidues should be in [-90, 90] and longitudes in [-180, 180]
    //You'll have to convert South lattitudes and East longitudes into their negative North and West counterparts.
    Vector lineFromCoordinate(Coordinate c){
        Vector ret = new Vector();
        //given:
        //tan(lat) == y/x
        //tan(long) == z/x
        //the Vector has magnitude 1, so sqrt(x^2 + y^2 + z^2) == 1
        //rearrange some symbols, solving for x first...
        ret.x = 1.0 / math.sqrt(tan(c.lattitude)^2 + tan(c.longitude)^2 + 1);
        //then for y and z
        ret.y = ret.x * tan(c.lattitude);
        ret.z = ret.x * tan(c.longitude);
        return ret;
    }
    
    Vector Vector::CrossProduct(Vector other){
        Vector ret = new Vector();
        ret.x = this.y * other.z - this.z * other.y;
        ret.y = this.z * other.x - this.x * other.z;
        ret.z = this.x * other.y - this.y * other.x;
        return ret;
    }
    
    GreatCircle circleFromCoordinates(Coordinate a, Coordinate b){
        Vector a = lineFromCoordinate(a);
        Vector b = lineFromCoordinate(b);
        GreatCircle ret = new GreatCircle();
        ret.normal = a.CrossProdct(b);
        return ret;
    }
    

    两个大圆在球体上的两个点相交。圆的叉积形成通过这些点之一的矢量。该向量的对映经过了另一个点。

    Vector intersection(GreatCircle a, GreatCircle b){
        return a.normal.CrossProduct(b.normal);
    }
    
    Vector antipode(Vector v){
        Vector ret = new Vector();
        ret.x = -v.x;
        ret.y = -v.y;
        ret.z = -v.z;
        return ret;
    }
    

    大圆段可以通过段的起点和终点来表示。

    class GreatCircleSegment{
        Vector start;
        Vector end;
        Vector getNormal(){return start.CrossProduct(end);}
        GreatCircle getWhole(){return new GreatCircle(this.getNormal());}
    };
    
    GreatCircleSegment segmentFromCoordinates(Coordinate a, Coordinate b){
        GreatCircleSegment ret = new GreatCircleSegment();
        ret.start = lineFromCoordinate(a);
        ret.end = lineFromCoordinate(b);
        return ret;
    }
    

    您可以使用dot product测量大圆弧段的圆弧大小或任意两个向量之间的角度。

    double Vector::DotProduct(Vector other){
        return this.x*other.x + this.y*other.y + this.z*other.z;
    }
    
    double Vector::Magnitude(){
        return math.sqrt(pow(this.x, 2) + pow(this.y, 2) + pow(this.z, 2));
    }
    
    //for any two vectors `a` and `b`, 
    //a.DotProduct(b) = a.magnitude() * b.magnitude() * cos(theta)
    //where theta is the angle between them.
    double angleBetween(Vector a, Vector b){
        return math.arccos(a.DotProduct(b) / (a.Magnitude() * b.Magnitude()));
    }
    

    您可以通过以下方式测试大圆圈a是否与大圆b相交:

    • 找到向量ca的整个大圆与b的交集。
    • 找到向量d,对象c
    • 如果c位于a.starta.end之间,或d位于a.starta.end之间,则a相交与b

    //returns true if Vector x lies between Vectors a and b.
    //note that this function only gives sensical results if the three vectors are coplanar.
    boolean liesBetween(Vector x, Vector a, Vector b){
        return angleBetween(a,x) + angleBetween(x,b) == angleBetween(a,b);
    }
    
    bool GreatCircleSegment::Intersects(GreatCircle b){
        Vector c = intersection(this.getWhole(), b);
        Vector d = antipode(c);
        return liesBetween(c, this.start, this.end) or liesBetween(d, this.start, this.end);
    }
    

    如果出现以下两个大圆圈ab相交:

    • ab的整个大圈相交
    • ba的整个大圈相交

    bool GreatCircleSegment::Intersects(GreatCircleSegment b){
        return this.Intersects(b.getWhole()) and b.Intersects(this.getWhole());
    }
    

    现在,您可以构建多边形并计算参考线经过它的次数。

    bool liesWithin(Array<Coordinate> polygon, Coordinate pointNotLyingInsidePolygon, Coordinate vehiclePosition){
        GreatCircleSegment referenceLine = segmentFromCoordinates(pointNotLyingInsidePolygon, vehiclePosition);
        int intersections = 0;
        //iterate through all adjacent polygon vertex pairs
        //we iterate i one farther than the size of the array, because we need to test the segment formed by the first and last coordinates in the array
        for(int i = 0; i < polygon.size + 1; i++){
            int j = (i+1) % polygon.size;
            GreatCircleSegment polygonEdge = segmentFromCoordinates(polygon[i], polygon[j]);
            if (referenceLine.Intersects(polygonEdge)){
                intersections++;
            }
        }
        return intersections % 2 == 1;
    }