来自anova输出的x和y变量的p值矩阵

时间:2012-07-10 18:33:36

标签: r loops anova

我有很多X和Y变量(类似于500 x 500)。以下只是小数据:

yvars <- data.frame (Yv1 = rnorm(100, 5, 3), Y2 = rnorm (100, 6, 4),
  Yv3 = rnorm (100, 14, 3))
xvars <- data.frame (Xv1 = sample (c(1,0, -1), 100, replace = T),
 X2 = sample (c(1,0, -1), 100, replace = T), 
 Xv3 = sample (c(1,0, -1), 100, replace = T), 
 D = sample (c(1,0, -1), 100, replace = T))

我想要取出p值并制作一个这样的矩阵:

     Yv1    Y2     Yv3   
Xv1
X2
Xv3
D

以下是我尝试循环过程:

prob = NULL
   anova.pmat <- function (x) {
            mydata <- data.frame(yvar = yvars[, x], xvars)
            for (i in seq(length(xvars))) {
              prob[[i]] <- anova(lm(yvar ~ mydata[, i + 1],
              data = mydata))$`Pr(>F)`[1]
              }
              }
    sapply (yvars,anova.pmat)
    Error in .subset(x, j) : only 0's may be mixed with negative subscripts
What could be the solution ?

修改

对于第一个Y变量:

对于第一个Y变量:

prob <- NULL
 mydata <- data.frame(yvar = yvars[, 1], xvars)
for (i in seq(length(xvars))) {
              prob[[i]] <- anova(lm(yvar ~ mydata[, i + 1],
              data = mydata))$`Pr(>F)`[1]
              }

prob 
[1] 0.4995179 0.4067040 0.4181571 0.6291167

再次编辑:

for (j in seq(length (yvars))){
        prob <- NULL
        mydata <- data.frame(yvar = yvars[, j], xvars)
         for (i in seq(length(xvars))) {
                  prob[[i]] <- anova(lm(yvar ~ mydata[, i + 1],
                  data = mydata))$`Pr(>F)`[1]
                  }
}

Gives the same result as above !!!

2 个答案:

答案 0 :(得分:4)

这是一种方法,使用plyr循环数据框的列(将其作为列表处理)为每个xvarsyvars,返回适当的p-值,将其排列成矩阵。添加行/列名称只是额外的。

library("plyr")

probs <- laply(xvars, function(x) {
    laply(yvars, function(y) {
        anova(lm(y~x))$`Pr(>F)`[1]
    })
})
rownames(probs) <- names(xvars)
colnames(probs) <- names(yvars)

答案 1 :(得分:1)

这是一个解决方案,它包括生成Y和X变量的所有组合以进行测试(我们不能使用combn)并在每种情况下运行线性模型:

dfrm <- data.frame(y=gl(ncol(yvars), ncol(xvars), labels=names(yvars)),
                   x=gl(ncol(xvars), 1, labels=names(xvars)), pval=NA)
## little helper function to create formula on the fly
fm <- function(x) as.formula(paste(unlist(x), collapse="~"))
## merge both datasets
full.df <- cbind.data.frame(yvars, xvars)
## apply our LM row-wise
dfrm$pval <- apply(dfrm[,1:2], 1, 
                   function(x) anova(lm(fm(x), full.df))$`Pr(>F)`[1])
## arrange everything in a rectangular matrix of p-values
res <- matrix(dfrm$pval, nc=3, dimnames=list(levels(dfrm$x), levels(dfrm$y)))

旁注:对于高维数据集,依靠QR分解来计算线性回归的p值非常耗时。为每个成对比较计算Pearson线性相关矩阵更容易,并使用关系式F =ν a r 2将r统计量转换为Fisher-Snedecor F /(1-r 2 ),其中自由度定义为ν a =(n-2) - #{(x i = NA),(y i = NA)}(即,(n-2)减去成对缺失值的数量 - 如果没有缺失值,则此公式为通常系数回归中R 2