我无法理解回溯,我可以从概念上理解我们采取行动,然后如果找不到任何解决方案,我们会尝试下一个解决方案。
考虑到这一点,我正试图解决N皇后问题, 我发现所有可能的候选人可以放在下一行然后逐个尝试,如果一个候选人没有产生解决方案,我把它弹出并继续使用下一个。
这是我提出的代码的核心:
void n_queens(int n)
{
vector<int> queens = vector<int>();
backtrack(queens,0,n);
}
void backtrack(vector<int>& queens, int current_row, int N)
{
// check if the configuration is solved
if(is_solution(queens, N))
{
print_solution(queens,N);
}
else
{
// construct a vector of valid candidates
vector<int> candidates = vector<int>();
if(construct_candidates(queens,current_row,N,candidates))
{
for(int i=0; i < candidates.size(); ++i)
{
// Push this in the partial solution and move further
queens.push_back(candidates[i]);
backtrack(queens,current_row + 1,N);
// If no feasible solution was found then we ought to remove this and try the next one
queens.pop_back();
}
}
}
}
bool construct_candidates(const vector<int>& queens, int row, int N, vector<int>& candidates)
{
// Returns false if there are no possible candidates, we must follow a different
// branch if this so happens
for(int i=0; i<N; ++i)
{
if(is_safe_square(queens,row,i,N))
{
// Add a valid candidate, this can be done since we pass candidates by reference
candidates.push_back(i);
}
}
return candidates.size() > 0;
}
它不会为我提供的任何输入打印任何内容。我尝试通过gdb
运行它,但没有成功,我认为这是因为我对回溯的基本理解存在问题。
我已经阅读了几本书中的回溯以及在线教程,我仍然感到朦胧,如果有人能给我一些想法来解决这个问题并帮助我理解这个稍微不直观的概念,那就太好了。
整个可编辑的源代码是:
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// The method prototypes
void n_queens(int n);
void backtrack(vector<int>&, int current_row, int N);
bool construct_candidates(const vector<int>&, int row, int N, vector<int>&);
bool is_safe_square(const vector<int>&, int row, int col, int N);
bool is_solution(const vector<int>&, int N);
void print_solution(const vector<int>&, int N);
int main()
{
int n;
cin>>n;
n_queens(n);
return 0;
}
void n_queens(int n)
{
vector<int> queens = vector<int>();
backtrack(queens,0,n);
}
void backtrack(vector<int>& queens, int current_row, int N)
{
// check if the configuration is solved
if(is_solution(queens, N))
{
print_solution(queens,N);
}
else
{
// construct a vector of valid candidates
vector<int> candidates = vector<int>();
if(construct_candidates(queens,current_row,N,candidates))
{
for(int i=0; i < candidates.size(); ++i)
{
// Push this in the partial solution and move further
queens.push_back(candidates[i]);
backtrack(queens,current_row + 1,N);
// If no feasible solution was found then we ought to remove this and try the next one
queens.pop_back();
}
}
}
}
bool construct_candidates(const vector<int>& queens, int row, int N, vector<int>& candidates)
{
// Returns false if there are no possible candidates, we must follow a different
// branch if this so happens
for(int i=0; i<N; ++i)
{
if(is_safe_square(queens,row,i,N))
{
// Add a valid candidate, this can be done since we pass candidates by reference
candidates.push_back(i);
}
}
return candidates.size() > 0;
}
bool is_safe_square(const vector<int>& queens, int row, int col, int N)
{
for(int i=0; i<queens.size(); ++i)
{
// case when the queens are already placed in the same row or column
if(queens[i] == row || queens[i] == col) return false;
// case when there is a diagonal threat
// remember! y = mx + c for a diagonal m = 1 therefore |x2 - x1| = |y2 - y1|
if(abs(i - row) == abs(queens[i] - col)) return false;
}
//Returns true when no unsafe square is found
//handles the case when there are no queens on the board trivially
return true;
}
bool is_solution(const vector<int>& queens, int N)
{
return queens.size() == N;
}
void print_solution(const vector<int>& queens, int N)
{
for(int i=0; i<N; ++i)
{
for(int j=0; j<N; ++j)
{
if(queens[i] == j){ cout<<'Q'; }
else { cout<<'_'; }
}
cout<<endl;
}
}
答案 0 :(得分:4)
这不是一个根本问题,只是一个错误。
在is_safe_square
中,更改
queens[i] == row
到
i == row