我们有一定数量,例如300个单位。这个数量应尽可能均匀地分布在40"时段"。如果每个插槽都相同则很容易 - 因此每个插槽的数量为7,5。但是,插槽的大小不一,我们无法填写"不仅仅是它的大小"允许例如如果它只有5.我们不能"填写"我们必须分配更多其他的。
我有一些基本的想法,但我远远没有成为一个经验,希望有一个简单的方法来解决这个问题。 作为一个例子,这可能是什么样子。在阵列" a"值代表插槽可以采用的最大值。 a [i]是第i个时隙的最大值。 " B"是我们必须分发整体,例如300。
# developing slots and their "size"
a <- rnorm(40,10,4)
sum(a)
# overall sum to distribute
b <- 300
也许可以按递增顺序对值进行排序,然后可以通过double for循环使用它。 a [,2]成为&#34;填充的列#34;量。
for i in 1:40
{a[i,2] <- a[1,2]*40
b <- a [1,2]*40}
for i in 2:40
{a[i,2] <- a[1,2]*39
b <- a[1,2]*39}
etc.
我不确定如何将两个for循环放在一起,如果这是一个适当的解决方案。 很高兴听到你的想法。谢谢!
答案 0 :(得分:2)
第一个版本,使用while循环:
optimal.fill <- function(a, b) {
stopifnot(sum(a) >= b)
d <- rep(0, length(a))
while(b > 0) {
has.room <- a > 0
num.slots <- sum(has.room)
min.size <- min(a[has.room])
add.size <- min(b / num.slots, min.size)
d[has.room] <- d[has.room] + add.size
a[has.room] <- a[has.room] - add.size
b <- b - num.slots * add.size
}
return(d)
}
第二个版本有点难以理解,但我觉得更优雅:
optimal.fill <- function(a, b) {
stopifnot(sum(a) >= b)
slot.order <- order(a)
sorted.sizes <- a[slot.order]
can.fill <- sorted.sizes * rev(seq_along(a))
full.slots <- slot.order[which(cumsum(can.fill) <= b)]
d <- rep(0, length(a))
d[ full.slots] <- a[full.slots]
d[!full.slots] <- (b - sum(a[full.slots])) /
(length(a) - length(full.slots))
return(d)
}
答案 1 :(得分:1)
这是另一种选择:
optimal.fill2 <- function(a,b) {
o <- rank(a)
a <- sort(a)
ca <- cumsum(a)
foo <- (b-ca)/((length(a)-1):0)
ok <- foo >= a
a[!ok] <- foo[max(which(ok))]
a[o]
}