我正在做一个使用图像处理技术来识别不同对象及其长度的项目。我在javaCV和OpenCV中经历了很多例子。但不幸的是,我无法识别多边形的T形。
我尝试使用以下矩形识别方法,但我失败了。
public static CvSeq findSquares( final IplImage src, CvMemStorage storage)
{
CvSeq squares = new CvContour();
squares = cvCreateSeq(0, sizeof(CvContour.class), sizeof(CvSeq.class), storage);
IplImage pyr = null, timg = null, gray = null, tgray;
timg = cvCloneImage(src);
CvSize sz = cvSize(src.width() & -2, src.height() & -2);
tgray = cvCreateImage(sz, src.depth(), 1);
gray = cvCreateImage(sz, src.depth(), 1);
pyr = cvCreateImage(cvSize(sz.width()/2, sz.height()/2), src.depth(), src.nChannels());
// down-scale and upscale the image to filter out the noise
cvPyrDown(timg, pyr, CV_GAUSSIAN_5x5);
cvPyrUp(pyr, timg, CV_GAUSSIAN_5x5);
cvSaveImage("ha.jpg", timg);
CvSeq contours = new CvContour();
// request closing of the application when the image window is closed
// show image on window
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
{
IplImage channels[] = {cvCreateImage(sz, 8, 1), cvCreateImage(sz, 8, 1), cvCreateImage(sz, 8, 1)};
channels[c] = cvCreateImage(sz, 8, 1);
if(src.nChannels() > 1){
cvSplit(timg, channels[0], channels[1], channels[2], null);
}else{
tgray = cvCloneImage(timg);
}
tgray = channels[c];
// try several threshold levels
for( int l = 0; l < N; l++ )
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
cvCanny(tgray, gray, 0, thresh, 5);
// dilate canny output to remove potential
// // holes between edge segments
cvDilate(gray, gray, null, 1);
}
else
{
// apply threshold if l!=0:
cvThreshold(tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY);
}
// find contours and store them all as a list
cvFindContours(gray, storage, contours, sizeof(CvContour.class), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
CvSeq approx;
// test each contour
while (contours != null && !contours.isNull()) {
if (contours.elem_size() > 0) {
approx = cvApproxPoly(contours, Loader.sizeof(CvContour.class),storage, CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0);
if( approx.total() == 4
&&
Math.abs(cvContourArea(approx, CV_WHOLE_SEQ, 0)) > 1000 &&
cvCheckContourConvexity(approx) != 0
){
double maxCosine = 0;
//
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = Math.abs(angle(new CvPoint(cvGetSeqElem(approx, j%4)), new CvPoint(cvGetSeqElem(approx, j-2)), new CvPoint(cvGetSeqElem(approx, j-1))));
maxCosine = Math.max(maxCosine, cosine);
}
if( maxCosine < 0.2 ){
CvRect x=cvBoundingRect(approx, l);
if((x.width()*x.height())<5000 ){
System.out.println("Width : "+x.width()+" Height : "+x.height());
cvSeqPush(squares, approx);
//System.out.println(x);
}
}
}
}
contours = contours.h_next();
}
contours = new CvContour();
}
}
return squares;
}
请帮助我修改此方法以识别图像中的T形状。输入图像是这样的。
这是我必须识别的T形
答案 0 :(得分:6)
我找到了解决问题的方法:
提示:在OpenCV中使用-1
作为thickness
函数中的drawContours
参数填充等高线。
就是这样!在此之后,您在图像上找到 T 形图形不是问题!
不幸的是,我不知道 JavaCV ,但我可以与您分享 c ++ 代码:
Mat src = imread("in.jpg"), gray;
cvtColor(src, gray, CV_BGR2GRAY);
threshold(gray, gray, 230, 255, THRESH_BINARY_INV);
vector<Vec4i> hierarchy;
vector<vector<Point> > contours;
findContours(gray, contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
gray = Scalar::all(255);
for (size_t i=0; i<contours.size(); i++)
{
drawContours(gray, contours, i, Scalar(0), -1);
}
Mat element = getStructuringElement(MORPH_RECT, Size(2, 2), Point(1, 1));
dilate(gray, gray, element);
erode(gray, gray, element);
imshow("window", gray);
提示:如果您愿意,可以将此代码转换为JavaCV。为此,请阅读this tutorial。
答案 1 :(得分:1)
您最好找到轮廓并使用CvApproxPoly()
。您可以找到一个很好的示例,说明如何使用此函数查找矩形here并调整它以查找T形状。此示例使用OpenCV创建并使用c ++编写。
通过序列中的所有点:
for (int i = 0; i < cornerPoints->total; i++) {
CvPoint *cornerPoints = (CvPoint*) cvGetSeqElem(cornerPoints, i);
}
答案 2 :(得分:0)