R和Python的输出值不同?

时间:2012-06-28 01:25:04

标签: python r debugging numpy statistics

也许我在z-normalizing我的阵列时做错了什么。有人可以看看这个并建议发生了什么吗?

在R:

> data <- c(2.02, 2.33, 2.99, 6.85, 9.20, 8.80, 7.50, 6.00, 5.85, 3.85, 4.85, 3.85, 2.22, 1.45, 1.34)
> data.mean <- mean(data)
> data.sd <- sqrt(var(data))
> data.norm <- (data - data.mean) / data.sd
> print(data.norm)
 [1] -0.9796808 -0.8622706 -0.6123005  0.8496459  1.7396910  1.5881940  1.0958286  0.5277147  0.4709033 -0.2865819
[11]  0.0921607 -0.2865819 -0.9039323 -1.1955641 -1.2372258

在Python中使用numpy:

>>> import string
>>> import numpy as np
>>> from scipy.stats import norm
>>> data = np.array([np.array([2.02, 2.33, 2.99, 6.85, 9.20, 8.80, 7.50, 6.00, 5.85, 3.85, 4.85, 3.85, 2.22, 1.45, 1.34])])
>>> data -= np.split(np.mean(data, axis=1), data.shape[0])
>>> data *= np.split(1.0/data.std(axis=1), data.shape[0])
>>> print data

[[-1.01406602 -0.89253491 -0.63379126  0.87946705  1.80075126  1.64393692
   1.13429034  0.54623659  0.48743122 -0.29664045  0.09539539 -0.29664045
  -0.93565885 -1.23752644 -1.28065039]]

我是否错误地使用numpy

2 个答案:

答案 0 :(得分:14)

您获得不同结果的原因与如何计算标准偏差/方差有关。 R使用分母N-1计算,而numpy使用分母N计算。你可以使用data.std(ddof=1)得到一个等于R结果的numpy结果,它告诉numpy在计算方差时使用N-1作为分母。

答案 1 :(得分:9)

我相信你的NumPy结果是正确的。不过我会以更简单的方式进行规范化:

>>> data = np.array([2.02, 2.33, 2.99, 6.85, 9.20, 8.80, 7.50, 6.00, 5.85, 3.85, 4.85, 3.85, 2.22, 1.45, 1.34])
>>> data -= data.mean()
>>> data /= data.std()
>>> data
array([-1.01406602, -0.89253491, -0.63379126,  0.87946705,  1.80075126,
        1.64393692,  1.13429034,  0.54623659,  0.48743122, -0.29664045,
        0.09539539, -0.29664045, -0.93565885, -1.23752644, -1.28065039])

两个结果之间的差异在于规范化:使用r作为R结果:

>>> r / data
array([ 0.96609173,  0.96609173,  0.96609173,  0.96609179,  0.96609179, 0.96609181,  0.9660918 ,  0.96609181,
        0.96609179,  0.96609179,        0.9660918 ,  0.96609179,  0.96609175,  0.96609176,  0.96609177])

因此,您的两个结果大多只是彼此成比例。因此,您可能希望比较使用R和Python获得的标准偏差。

PS :现在我正在考虑它,可能是NumPy和R中的方差没有以相同的方式定义:对于N元素,某些工具会正常化在计算方差时,使用N-1代替N。你可能想检查一下。

PPS 这是差异的原因:因素的差异来自两种不同的规范化约定:观察到的因子只是sqrt(14/15)= 0.9660917 ...(因为数据有15个元素)。因此,为了在R中获得与Python相同的结果,您需要将R结果除以此因子。