有没有人看到过针对cornu螺旋(又名,回旋体)或花键的正确绘制算法?对于弧线和线条,我们有像Bresenham算法这样的东西。这适用于回旋体吗?
维基百科页面有这个Sage代码:
p = integral(taylor(cos(L^2), L, 0, 12), L)
q = integral(taylor(sin(L^2), L, 0, 12), L)
r1 = parametric_plot([p, q], (L, 0, 1), color = 'red')
是否有参数图的示例代码?我在网上搜索时看不到多少。
答案 0 :(得分:2)
我没有看到任何现有的高速算法。但是,我确实理解了绘制这样东西的常用方法。基本上,您递归地分割L,直到计算出的左,中,右点足够接近您可以绘制该直线的直线。我能够使用MathNet.Numerics.dll进行集成。一些代码:
public static void DrawClothoidAtOrigin(List<Point> lineEndpoints, Point left, Point right, double a, double lengthToMidpoint, double offsetToMidpoint = 0.0)
{
// the start point and end point are passed in; calculate the midpoint
// then, if we're close enough to a straight line, add that line (aka, the right end point) to the list
// otherwise split left and right
var midpoint = new Point(a * C(lengthToMidpoint + offsetToMidpoint), a * S(lengthToMidpoint + offsetToMidpoint));
var nearest = NearestPointOnLine(left, right, midpoint, false);
if (Distance(midpoint, nearest) < 0.4)
{
lineEndpoints.Add(right);
return;
}
DrawClothoidAtOrigin(lineEndpoints, left, midpoint, a, lengthToMidpoint * 0.5, offsetToMidpoint);
DrawClothoidAtOrigin(lineEndpoints, midpoint, right, a, lengthToMidpoint * 0.5, offsetToMidpoint + lengthToMidpoint);
}
private static double Distance(Point a, Point b)
{
var x = a.X - b.X;
var y = a.Y - b.Y;
return Math.Sqrt(x * x + y * y);
}
private static readonly double PI_N2 = Math.Pow(Math.PI * 2.0, -0.5);
public static double C(double theta)
{
return Integrate.OnClosedInterval(d => Math.Cos(d) / Math.Sqrt(d), 0.0, theta) / PI_N2;
}
public static double S(double theta)
{
return Integrate.OnClosedInterval(d => Math.Sin(d) / Math.Sqrt(d), 0.0, theta) / PI_N2;
}