我将素数因子化作为字典:
>>>pf(100)
>>>{2:2,5:2}
使用函数pf
检索数字的所有除数的最佳pythonic方法是什么?随意使用itertools
。
答案 0 :(得分:4)
这样的事可能
>>> from itertools import *
>>> from operator import mul
>>> d = {2:2,5:1} # result of pf(20)
>>> l = list(chain(*([k] * v for k, v in d.iteritems())))
>>> l
[2, 2, 5]
>>> factors = set(chain(*(permutations(l, i) for i in range(1,len(l)+1))))
set([(2, 2, 5), (2,), (5,), (5, 2, 2), (2, 2), (2, 5), (5, 2), (2, 5, 2)])
>>> set(reduce(mul, fs, 1) for fs in factors)
set([4, 2, 10, 20, 5])
答案 1 :(得分:0)
from itertools import product
def primeplus():
"""
Superset of primes using the primes are a subset of 6k+1 and 6k-1.
"""
yield 2
yield 3
n=5
while(True):
yield n
yield n+2
n+=6
def primefactorization(n):
ret={}
for i in primeplus():
if n==1: break
while n%i==0:
ret[i]=ret.setdefault(i,0)+1
n=n//i
return ret
def divisors(n):
pf=primefactorization(n)
keys,values=zip(*pf.items())
return (reduce(lambda x,y:(x[0]**x[1])*(y[0]**y[1]),zip(keys,p1)+[(1,1)]) for p1 in product(*(xrange(v+1) for v in values)))
答案 2 :(得分:0)
虽然这个答案不是过于pythonic,但它使用简单的递归来找到素数因子。
def find_factors(x):
for i in xrange(2, int(x ** 0.5) + 1):
if x % i == 0:
return [i] + find_factors(x / i)
return [x]
print find_factors(13) # [13]
print find_factors(103) # [103]
print find_factors(125) # [5,5,5]
print find_factors(1334234) # [2, 11, 60647]
from collections import Counter
print dict(Counter(find_factors(13))) # {13: 1}
print dict(Counter(find_factors(103))) # {103: 1}
print dict(Counter(find_factors(125))) # {5: 3}
print dict(Counter(find_factors(1334234))) # {2: 1, 11: 1, 60647: 1}
答案 3 :(得分:0)
单行:
>>> d = {3:4, 5:1, 2:2}
>>> sorted(map(lambda p: reduce(mul, p), product(*map(lambda c: [c[0] ** i for i in range(c[1] + 1)], d.iteritems()))))
[1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 81, 90, 108, 135, 162, 180, 270, 324, 405, 540, 810, 1620]
>>>