如何使用双向BFS查找最短路径?假设有一个6x6网格。 起点在(0,5),终点在(4,1)。使用双向bfs的最短路径是什么?没有路径成本。它是无向的。
答案 0 :(得分:34)
双向BFS如何运作?
同时从源顶点和目标顶点运行两个BFS,一旦发现两个运行共同的顶点就终止。该顶点位于源和目标之间。
为什么它比BFS好?
在大多数情况下,双向BFS将比简单BFS产生更好的结果。假设源和目标之间的距离为k
,分支因子为B
(每个顶点平均具有B边缘)。
1 + B + B^2 + ... + B^k
个顶点。2 + 2B^2 + ... + 2B^(k/2)
个顶点。对于较大的B
和k
,第二个明显比第一个快得多。
在您的情况下:
为简单起见,我假设矩阵中没有障碍物。以下是发生的事情:
iteration 0 (init):
front1 = { (0,5) }
front2 = { (4,1) }
iteration 1:
front1 = { (0,4), (1,5) }
front2 = { (4,0), (4,2), (3,1), (5,1) }
iteration 2:
front1 = { (0,3), (1,4), (2,5) }
front2 = { (3,0), (5,0), (4,3), (5,2), (3,2), (2,1) }
iteration 3:
front1 = { (0,2), (1,3), (2,4), (3,5) }
front2 = { (2,0), (4,4), (3,3), (5,3), (2,2), (1,1), }
iteration 4:
front1 = { (0,1), (1,2), .... }
front2 = { (1,2) , .... }
现在,我们发现前沿与(1,2)相交,以及从源顶点和目标顶点到达那里的路径:
path1: (0,5) -> (0,4) -> (0,3) -> (0,2) -> (1,2)
path2: (4,1) -> (3,1) -> (2,1) -> (1,1) -> (1,2)
我们现在只需要反转路径2并将其附加到路径1(当然,删除一个常见的交叉顶点),为我们提供完整的路径:
(0,5) -> (0,4) -> (0,3) -> (0,2) -> (1,2) -> (1,1) -> (2,1) -> (3,1) -> (4,1)