我正在接近Bio Informatics的任务,需要从一些细胞图像中提取一些特征。
我使用SIFT算法提取图像内部的关键点,如图所示。
正如你在图片中看到的那样(用红色圈出),一些关键点是异常值,我不想计算它们的任何特征。
我使用以下代码获取了cv::KeyPoint
向量:
const cv::Mat input = cv::imread("/tmp/image.jpg", 0); //Load as grayscale
cv::SiftFeatureDetector detector;
std::vector<cv::KeyPoint> keypoints;
detector.detect(input, keypoints);
但我想从vector
丢弃所有关键点,例如,在图像中以某个感兴趣区域(ROI)为中心的关键点少于3个。< / p>
因此我需要实现一个函数,返回作为输入给定的某个ROI内的关键点数:
int function_returning_number_of_key_points_in_ROI( cv::KeyPoint, ROI );
//I have not specified ROI on purpose...check question 3
我有三个问题:
注意:
我忘了指定我想要一个有效的函数实现,即检查每个关键点所有其他关键点相对于它的相对位置不是一个好的解决方案(如果存在另一种做法)。
答案 0 :(得分:8)
我决定采用统计路线,但如果您有多个单元格,这可能不起作用。
我的解决方案相当简单:
distance < mu + 2*sigma
以下是我使用此算法得到的图像(关键点==绿色,质心==红色):
最后,这是我如何做到的代码示例:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <iostream>
#include <vector>
using namespace cv;
using namespace std;
void distanceFromCentroid(const vector<Point2f>& points, Point2f centroid, vector<double>& distances)
{
vector<Point2f>::const_iterator point;
for(point = points.begin(); point != points.end(); ++point)
{
double distance = std::sqrt((point->x - centroid.x)*(point->x - centroid.x) + (point->y - centroid.y)*(point->y - centroid.y));
distances.push_back(distance);
}
}
int main(int argc, char* argv[])
{
Mat input = imread("cell.jpg", 0); //Load as grayscale
SiftFeatureDetector detector;
vector<cv::KeyPoint> keypoints;
detector.detect(input, keypoints);
vector<Point2f> points;
vector<KeyPoint>::iterator keypoint;
for(keypoint = keypoints.begin(); keypoint != keypoints.end(); ++keypoint)
{
points.push_back(keypoint->pt);
}
Moments m = moments(points, true);
Point2f centroid(m.m10 / m.m00, m.m01 / m.m00);
vector<double> distances;
distanceFromCentroid(points, centroid, distances);
Scalar mu, sigma;
meanStdDev(distances, mu, sigma);
cout << mu.val[0] << ", " << sigma.val[0] << endl;
vector<KeyPoint> filtered;
vector<double>::iterator distance;
for(size_t i = 0; i < distances.size(); ++i)
{
if(distances[i] < (mu.val[0] + 2.0*sigma.val[0]))
{
filtered.push_back(keypoints[i]);
}
}
Mat out = input.clone();
drawKeypoints(input, filtered, out, Scalar(0, 255, 0));
circle(out, centroid, 7, Scalar(0, 0, 255), 1);
imshow("kpts", out);
waitKey();
imwrite("statFilter.png", out);
return 0;
}
希望有所帮助!