我有一个大数据集。我想分成“n”个子数据集,每个子数据集具有相同的大小“s”。但是,如果不能按数字整除,则最后一个数据集可能小于其他数据集。并将它们作为csv文件输出到工作目录。
让我们说以下小例子:
set.seed(1234)
mydf <- data.frame (matrix(sample(1:10, 130, replace = TRUE), ncol = 13))
mydf
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
1 3 7 1 9 6 4 7 5 8 2 2 2 8
2 5 3 4 6 9 5 3 10 5 8 10 2 10
3 4 6 10 4 4 6 3 4 2 9 9 2 9
4 10 10 9 4 3 7 7 7 10 6 7 10 2
5 10 3 9 3 2 10 9 6 4 4 4 6 3
6 7 2 8 7 5 5 10 10 9 3 7 8 4
7 3 2 2 7 10 9 2 2 10 1 1 10 4
8 3 9 9 7 3 1 7 6 10 3 10 3 2
9 9 3 6 9 3 2 2 3 4 2 9 10 10
10 6 4 3 3 5 9 3 9 10 7 4 6 10
我想创建一个函数,将数据集随机分成n个子集(在这种情况下说大小为3,因为有13列 - 最后一个数据集将有1列剩余4个,每个有3个)并输出为文本将文件作为单独的数据集。
这是我做的:
set.seed(123)
reshuffled <- sample(1:length(mydf),length(mydf), replace = FALSE)
# just crazy manual divide
group1 <- reshuffled[1:3]; group2 <- reshuffled[4:6]; group3 <- reshuffled[7:9]
group4 <- reshuffled[10:12]; group5 <- reshuffled[13]
# just manual
data1 <- mydf[,group1]; data2 <- mydf[,group2]; ....so on;
# I want to write dimension of dataset at fist row of each dataset
cat (dim(data1))
write.csv(data1, "data1.csv"); write.csv(data2, "data2.csv"); .....so on
是否可以循环过程,因为我必须生成100个子数据集?
答案 0 :(得分:1)
也许有更简洁的解决方案,但您可以尝试以下方法:
mydf <- data.frame (matrix(sample(1:10, 130, replace = TRUE), ncol = 13))
## Number of columns for each sub-dataset
size <- 3
nb.cols <- ncol(mydf)
nb.groups <- nb.cols %/% size
reshuffled <- sample.int(nb.cols, replace=FALSE)
groups <- c(rep(1:nb.groups, each=size), rep(nb.groups+1, nb.cols %% size))
dfs <- lapply(split(reshuffled, groups), function(v) mydf[,v,drop=FALSE])
for (i in 1:length(dfs)) write.csv(dfs[[i]], file=paste("data",i,".csv",sep=""))
答案 1 :(得分:1)
只是为了好玩,可能比朱巴的慢
mydf <- data.frame (matrix(sample(1:10, 130, replace = TRUE), ncol = 13))
size <- 3
by(t(mydf),
INDICES=sample(as.numeric(gl((ncol(mydf) %/% size) + 1, size, ncol(mydf))),
ncol(mydf),
replace=FALSE),
FUN=function(x) write.csv(t(x), paste(rownames(x), collapse='-'), row.names=F))
答案 2 :(得分:0)
为了将'mydf'分成几乎相等的部分,我从中获取灵感 这个问题和相应的答案: link
它创建的分区大小最小和之间的差异 最大的分区尽可能小。在此示例中,此差异等于1.示例:
分区方法1 - 使用'floor'功能(此处显示无可重现的代码)。通过随后的样本层(100/7)=前6次迭代的14个索引,在7个几乎相等的部分/加数中划分100行。第7个元素是余数。这会产生:
14,14,14,14,14,14,16。总和= 100,最大差异= 2
分区方法2 - 使用'ceiling'功能(此处显示无可重现的代码)。使用'ceiling'函数而不是'floor'函数可以得到类似的结果:
15,15,15,15,15,15,10。总和= 100,最大差异= 5
分区方法3 - 使用上面参考的公式。使用以下过程时,分区大小的向量('sequence_diff')为:
14,14,14,15,14,14,15。Sum = 100,max difference = 1
R-代码:
set.seed(1234)
#I increased the number of rows in the data frame to 100
mydf <- data.frame (matrix(sample(x = 1:100, size = 1300, replace = TRUE),
ncol = 13))
index_list <- list() #Will store the indices for all partitions
indices <- 1:nrow(mydf) #Initially contains all indices for the dataset 'mydf'
numb_partitions <- 7 #Specifies the number of partitions
sequence <- floor(((nrow(mydf)*1:numb_partitions)/numb_partitions))
sequence <- c(0, sequence)
#'sequence_diff' will contain the number of instances for each partition.
sequence_diff <- vector()
for(j in 1:numb_partitions){
sequence_diff[j] <- sequence[j+1] - sequence[j]
}
#Inspect 'sequence_diff' and verify it's elements sum up to the total
#number of rows in 'mydf' (100).
> sequence_diff
[1] 14 14 14 15 14 14 15
> sum(sequence_diff)
[1] 100 #Correct!
for(i in 1:numb_partitions){
#Use a different seed for each sampling iteration.
set.seed(seed = i)
#Sample from object 'indices' of size 1/'numb_partitions'
indices_partition <- sample(x = indices,
size = sequence_diff[i],
replace = FALSE)
#Remove the selected indices from 'indices' so these indices will not be
#selected in successive iterations.
indices <- setdiff(x = indices, y = indices_partition)
#Store the indices for the i-th iteration in the list 'index_list'. This
#is just to verify later that
#the procedure has divided all indices in 'numb_partitions' disjunct sets.
index_list[[i]] <- indices_partition
#Dynamically create a new object that is named 'mydfx' in which x is the
#i-th partition.
assign(x = paste0("mydf", i), value = mydf[indices_partition,])
write.csv(x = get(x = paste0("mydf", i)), #Dynamically get the object from environment.
file = paste0("mydf", i,".csv"), #Dynamically assgin a name to the csv-file.
sep = ",",
col.names = T,
row.names = FALSE
}
#Check whether all index subsets are mutually exclusive: union should have 100
#unique elements.
length(unique(unlist(index_list)))
[1] 100 #Correct!