这是我的代码......
struct Test {
string foo() { return "bar"; }
};
#define callFn(obj,method) obj->method();
int main() {
Test* t = new Test();
cout << callFn(t,foo); // bar
return 0;
}
......这是我想要的代码
int main() {
Test* t = new Test();
string method = "foo";
cout << callFn(t,method); // bar
return 0;
}
有可能吗?
答案 0 :(得分:3)
你做不到。 C ++没有反射功能。
您必须定义,例如一个std::map
,它将字符串映射到函数指针。
void foo(int x) { std::cout << "foo " << (x+3) << "\n"; }
void bar(int x) { std::cout << "bar " << (x+5) << "\n"; }
int main() {
std::map<std::string, void (*)(int)> mapper;
mapper["foo"] = &foo;
mapper["bar"] = &bar;
// ...
mapper["foo"](42);
mapper["bar"](42);
}
答案 1 :(得分:1)
您可能想要成员函数指针之类的东西:
typedef std::string (Test::*ptmf)();
#define CALL_MF(pobject, p) (((pobject)->*(p))())
int main()
{
ptmf method = &Test::foo;
Test * t = new Test;
std::string result = CALL_MF(t, method); // or directly: (t->*method)()
}
您可以创建其元素类型为ptmf
的容器,以便在运行时管理不同的成员函数指针:
std::map<int, ptmf> function_registry;
std::string call(int key, Test * t)
{
auto it = function_registry.find(key);
return (it != function_registry.end()) ? CALL_MF(t, *it) : "[ERROR]";
}
答案 2 :(得分:1)
你可以做这样的事情,但由于C ++缺乏反射功能,你必须做一些额外的工作才能使它成为可能。
struct base {
virtual void call_method( std::string const & ) = 0;
};
struct derived : public base {
std::string foo( ) const {
return "bar";
}
// More methods.
void call_method( std::string const &p_name ) {
if( p_name == "foo" ) {
this -> foo( );
}
// More checks on method names.
else {
// Handle invalid function name.
}
}
};
这称为数据驱动的接口,您可以将命令传递给对象,并以多态方式响应它们识别的命令。您可以通过从命令到函数指针创建静态初始化的无序映射,然后使用它来解析要调用的函数来改进我所显示的内容。但是,如果可以的话,最好避免使用这种类型的函数调度,因为与静态函数调度相比它很慢并且容易出错,因为拼写错误可能导致错误的调用或错误。它也有一个缺点,你不能轻易获得返回值,虽然在某些情况下是可能的。
编辑:我想提供一个更完整的例子,说明如何做到这一点,所以这里有:
#include <cassert>
#include <iostream>
#include <boost/bind.hpp>
#include <boost/blank.hpp>
#include <boost/variant.hpp>
#include <boost/function.hpp>
#include <boost/unordered_map.hpp>
#include <boost/assign/list_of.hpp>
// A base class that defines an interface to call methods by name
// and to access the list of methods. We use a map of argument
// names to boost::variants to pass arguments to the functions.
// Right now we support only ints and strings, but we can expand
// this to other types if we want. In particular, we can use
// boost::any to support arbitrary types, but it will be slow.
// Maybe that's not a big deal since function dispatch through
// named functions is slow anyway.
struct base {
typedef boost::variant< boost::blank, int, std::string > argument_t;
typedef boost::variant< boost::blank, int, std::string > return_t;
typedef boost::unordered_map< std::string, argument_t > param_map_t;
typedef boost::function< return_t ( base *, param_map_t const & ) >
method_t;
typedef boost::unordered_map< std::string, method_t > method_map_t;
return_t call_method(
std::string const &p_method
, param_map_t const &p_params = param_map_t( )
)
{
method_map_t::const_iterator l_itr =
get_methods( ).find( p_method );
if( l_itr == get_methods( ).end( )) {
// Handle undefined method identifier.
}
return l_itr -> second( this, p_params );
}
virtual method_map_t const &get_methods( ) const = 0;
};
// A trampoline object to elide the concrete type that
// implements the base interface and to provide appropriate
// casting. This is necessary to force all functions in our
// method map to have the same type.
template< typename U >
base::return_t trampoline(
base::return_t (U::*p_fun)( base::param_map_t const & )
, base *p_obj
, base::param_map_t const &p_param_map
)
{
U *l_obj = static_cast< U* >( p_obj );
return (l_obj ->* p_fun)( p_param_map );
}
// A derived type that implements the base interface and
// provides a couple functions that we can call by name.
struct derived : public base {
static method_map_t const c_method_map;
return_t foo( param_map_t const &p_params ) {
std::cout << "foo" << std::endl; return 1;
}
return_t bar( param_map_t const &p_params ) {
std::cout << "bar" << std::endl; return std::string( "bar" );
}
method_map_t const &get_methods( ) const {
return c_method_map;
}
};
// Construct map of method names to method pointers for derived.
base::method_map_t const derived::c_method_map = boost::assign::map_list_of
( "foo", boost::bind( &trampoline< derived >, &derived::foo, _1, _2 ))
( "bar", boost::bind( &trampoline< derived >, &derived::bar, _1, _2 ))
;
int main( ) {
base *blah = new derived( );
// Call methods by name and extract return values.
assert( boost::get< int >( blah -> call_method( "foo" )) == 1 );
assert( boost::get< std::string >( blah -> call_method( "bar" )) == "bar" );
// Iterate over available methods
typedef base::method_map_t::const_iterator iterator;
iterator l_itr = blah -> get_methods( ).begin( );
iterator l_end = blah -> get_methods( ).end ( );
for( ; l_itr != l_end; ++l_itr ) {
if( l_itr -> first == "foo" ) l_itr -> second( blah, base::param_map_t( ));
}
}
输出结果为:
foo
bar
foo
正如您所看到的,设置它有很多工作,但添加实现该接口的新类型非常容易。
答案 3 :(得分:0)