IEEE754浮点值的可移植序列化

时间:2012-05-16 14:22:59

标签: c floating-point portability ieee-754 endianness

我最近一直致力于一个需要存储和加载大量数据的系统,包括单精度浮点值。我决定对整数的网络字节顺序进行标准化,并决定以big-endian格式存储浮点值,即:

  |-- Byte 0 --| |-- Byte 1 -|  Byte 2   Byte 3
  #      ####### #     ####### ######## ########
Sign     Exponent          Mantissa
 1b    8b, MSB first    23b, MSB first

理想情况下,我想提供像htonl()ntohl()这样的函数,因为我已经使用这些函数来擦除整数,而且我也希望以一种具有尽可能多的平台的方式实现它 - 尽可能独立(假设float类型对应于IEEE754 32位浮点值)。有没有办法,可能使用ieee754.h来做到这一点?

我有一个似乎工作的答案,我将在下面发布,但它似乎相当缓慢且效率低下,我将不胜感激任何有关如何使其更快和/或更可靠的建议

3 个答案:

答案 0 :(得分:6)

更简单,并且取决于与您相同的假设(浮点数和整数类型具有相同的字节顺序,并且几乎普遍有效 - 实际上您将永远不会遇到系统这不是真的):

#include <string.h>

float htonf(float val) {
    uint32_t rep;
    memcpy(&rep, &val, sizeof rep);
    rep = htonl(rep);
    memcpy(&val, &rep, sizeof rep);
    return val;
}

任何相当不错的编译器都会优化掉两个memcpy个调用;它们存在以击败过度严格的别名优化,因此最终效率与htonl一样高,加上单个函数调用的开销。

答案 1 :(得分:1)

正如上面提到的问题所述,我对我的问题有一个解决方案,但我并不特别依赖它,我欢迎其他答案,所以我在这里发布而不是在问题中。特别是,它似乎很慢,我不确定它是否会打破严格的混淆,以及其他潜在的问题。

#include <ieee754.h>

float
htonf (float val)
{
  union ieee754_float u;
  float v;
  uint8_t *un = (uint8_t *) &v;

  u.f = val;
  un[0] = (u.ieee.negative << 7) + ((u.ieee.exponent & 0xfe) >> 1);
  un[1] = ((u.ieee.exponent & 0x01) << 7) + ((u.ieee.mantissa & 0x7f0000) >> 16);
  un[2] = (u.ieee.mantissa & 0xff00) >> 8;
  un[3] = (u.ieee.mantissa & 0xff);
  return v;
}

float
ntohf (float val)
{
  union ieee754_float u;
  uint8_t *un = (uint8_t *) &val;

  u.ieee.negative = (un[0] & 0x80) >> 7;
  u.ieee.exponent = (un[0] & 0x7f) << 1;
  u.ieee.exponent += (un[1] & 0x80) >> 7;
  u.ieee.mantissa = (un[1] & 0x7f) << 16;
  u.ieee.mantissa += un[2] << 8;
  u.ieee.mantissa += un[3];

  return u.f;
}

答案 2 :(得分:1)

这是一个便携式IEEE 754写例程。 无论主机上的浮点表示如何,它都将以IEEE 754格式写入双精度。

/*
* write a double to a stream in ieee754 format regardless of host
*  encoding.
*  x - number to write
*  fp - the stream
*  bigendian - set to write big bytes first, elee write litle bytes
*              first
*  Returns: 0 or EOF on error
*  Notes: different NaN types and negative zero not preserved.
*         if the number is too big to represent it will become infinity
*         if it is too small to represent it will become zero.
*/
static int fwriteieee754(double x, FILE *fp, int bigendian)
{
    int shift;
    unsigned long sign, exp, hibits, hilong, lowlong;
    double fnorm, significand;
    int expbits = 11;
    int significandbits = 52;

    /* zero (can't handle signed zero) */
    if (x == 0)
    {
        hilong = 0;
        lowlong = 0;
        goto writedata;
    }
    /* infinity */
    if (x > DBL_MAX)
    {
        hilong = 1024 + ((1 << (expbits - 1)) - 1);
        hilong <<= (31 - expbits);
        lowlong = 0;
        goto writedata;
    }
    /* -infinity */
    if (x < -DBL_MAX)
    {
        hilong = 1024 + ((1 << (expbits - 1)) - 1);
        hilong <<= (31 - expbits);
        hilong |= (1 << 31);
        lowlong = 0;
        goto writedata;
    }
    /* NaN - dodgy because many compilers optimise out this test, but
    *there is no portable isnan() */
    if (x != x)
    {
        hilong = 1024 + ((1 << (expbits - 1)) - 1);
        hilong <<= (31 - expbits);
        lowlong = 1234;
        goto writedata;
    }

    /* get the sign */
    if (x < 0) { sign = 1; fnorm = -x; }
    else { sign = 0; fnorm = x; }

    /* get the normalized form of f and track the exponent */
    shift = 0;
    while (fnorm >= 2.0) { fnorm /= 2.0; shift++; }
    while (fnorm < 1.0) { fnorm *= 2.0; shift--; }

    /* check for denormalized numbers */
    if (shift < -1022)
    {
        while (shift < -1022) { fnorm /= 2.0; shift++; }
        shift = -1023;
    }
    /* out of range. Set to infinity */
    else if (shift > 1023)
    {
        hilong = 1024 + ((1 << (expbits - 1)) - 1);
        hilong <<= (31 - expbits);
        hilong |= (sign << 31);
        lowlong = 0;
        goto writedata;
    }
    else
        fnorm = fnorm - 1.0; /* take the significant bit off mantissa */

    /* calculate the integer form of the significand */
    /* hold it in a  double for now */

    significand = fnorm * ((1LL << significandbits) + 0.5f);


    /* get the biased exponent */
    exp = shift + ((1 << (expbits - 1)) - 1); /* shift + bias */

    /* put the data into two longs (for convenience) */
    hibits = (long)(significand / 4294967296);
    hilong = (sign << 31) | (exp << (31 - expbits)) | hibits;
    x = significand - hibits * 4294967296;
    lowlong = (unsigned long)(significand - hibits * 4294967296);

writedata:
    /* write the bytes out to the stream */
    if (bigendian)
    {
        fputc((hilong >> 24) & 0xFF, fp);
        fputc((hilong >> 16) & 0xFF, fp);
        fputc((hilong >> 8) & 0xFF, fp);
        fputc(hilong & 0xFF, fp);

        fputc((lowlong >> 24) & 0xFF, fp);
        fputc((lowlong >> 16) & 0xFF, fp);
        fputc((lowlong >> 8) & 0xFF, fp);
        fputc(lowlong & 0xFF, fp);
    }
    else
    {
        fputc(lowlong & 0xFF, fp);
        fputc((lowlong >> 8) & 0xFF, fp);
        fputc((lowlong >> 16) & 0xFF, fp);
        fputc((lowlong >> 24) & 0xFF, fp);

        fputc(hilong & 0xFF, fp);
        fputc((hilong >> 8) & 0xFF, fp);
        fputc((hilong >> 16) & 0xFF, fp);
        fputc((hilong >> 24) & 0xFF, fp);
    }
    return ferror(fp);
}