在模拟中控制内存分配/ GC?

时间:2012-05-15 02:25:29

标签: haskell random garbage-collection simulation ghc

State monad中运行的模拟中,如何减少内存使用量和GC时间,我遇到了一些麻烦。目前我必须使用+RTS -K100M运行已编译的代码以避免堆栈空间溢出,并且GC统计数据非常可怕(见下文)。

以下是代码的相关摘要。完整的,有效的(GHC 7.4.1)代码可以在http://hpaste.org/68527找到。

-- Lone algebraic data type holding the simulation configuration.
data SimConfig = SimConfig {
        numDimensions :: !Int            -- strict
    ,   numWalkers    :: !Int            -- strict
    ,   simArray      :: IntMap [Double] -- strict spine
    ,   logP          :: Seq Double      -- strict spine
    ,   logL          :: Seq Double      -- strict spine
    ,   pairStream    :: [(Int, Int)]    -- lazy (infinite) list of random vals
    ,   doubleStream  :: [Double]        -- lazy (infinite) list of random vals
    } deriving Show

-- The transition kernel for the simulation.
simKernel :: State SimConfig ()
simKernel = do
    config <- get
    let arr   = simArray      config
    let n     = numWalkers    config
    let d     = numDimensions config
    let rstm0 = pairStream    config
    let rstm1 = doubleStream  config
    let lp    = logP          config
    let ll    = logL          config

    let (a, b)    = head rstm0                           -- uses random stream    
    let z0 = head . map affineTransform $ take 1 rstm1   -- uses random stream
            where affineTransform a = 0.5 * (a + 1) ^ 2


    let proposal  = zipWith (+) r1 r2
            where r1    = map (*z0)     $ fromJust (IntMap.lookup a arr)
                  r2    = map (*(1-z0)) $ fromJust (IntMap.lookup b arr)

    let logA = if val > 0 then 0 else val
            where val = logP_proposal + logL_proposal - (lp `index` (a - 1)) - (ll `index` (a - 1)) + ((fromIntegral n - 1) * log z0)
                  logP_proposal = logPrior proposal
                  logL_proposal = logLikelihood proposal

    let cVal       = (rstm1 !! 1) <= exp logA            -- uses random stream

    let newConfig = SimConfig { simArray = if   cVal
                                           then IntMap.update (\_ -> Just proposal) a arr
                                           else arr
                              , numWalkers = n
                              , numDimensions = d
                              , pairStream   = drop 1 rstm0
                              , doubleStream = drop 2 rstm1
                              , logP = if   cVal
                                       then Seq.update (a - 1) (logPrior proposal) lp
                                       else lp
                              , logL = if   cVal
                                       then Seq.update (a - 1) (logLikelihood proposal) ll
                                       else ll
                              }

    put newConfig

main = do 
    -- (some stuff omitted)
    let sim = logL $ (`execState` initConfig) . replicateM 100000 $ simKernel
    print sim

就堆而言,配置文件似乎提示除了System.Random之外,(,)函数是内存的罪魁祸首。我无法直接包含图像,但您可以在此处查看堆配置文件:http://i.imgur.com/5LKxX.png

我不知道如何进一步减少这些东西的存在。随机变量是在State monad之外生成的(以避免在每次迭代时拆分生成器),并且我相信(,)simKernel的唯一实例是从lazy中取出一对时出现的列表(pairStream)包含在模拟配置中。

统计数据,包括GC,如下:

  1,220,911,360 bytes allocated in the heap
     787,192,920 bytes copied during GC
     186,821,752 bytes maximum residency (10 sample(s))
       1,030,400 bytes maximum slop
             449 MB total memory in use (0 MB lost due to fragmentation)

                                    Tot time (elapsed)  Avg pause  Max pause
  Gen  0      2159 colls,     0 par    0.80s    0.81s     0.0004s    0.0283s
  Gen  1        10 colls,     0 par    0.96s    1.09s     0.1094s    0.4354s

  INIT    time    0.00s  (  0.00s elapsed)
  MUT     time    0.95s  (  0.97s elapsed)
  GC      time    1.76s  (  1.91s elapsed)
  EXIT    time    0.00s  (  0.00s elapsed)
  Total   time    2.72s  (  2.88s elapsed)

  %GC     time      64.9%  (66.2% elapsed)

  Alloc rate    1,278,074,521 bytes per MUT second

  Productivity  35.1% of total user, 33.1% of total elapsed

同样,我必须提高最大堆栈大小才能运行模拟。我知道在某个地方肯定会有一个大笨蛋......但我无法弄清楚在哪里?

如何在这样的问题中改进堆/堆栈分配和GC?我怎样才能确定thunk可能在哪里积聚?这里State monad的使用是否被误导了?

-

更新:

在使用-fprof-auto进行编译时,我忽略了查看探查器的输出。以下是该输出的主管:

COST CENTRE                       MODULE                             no.     entries  %time %alloc   %time %alloc

MAIN                              MAIN                                58           0    0.0    0.0   100.0  100.0
 main                             Main                               117           0    0.0    0.0   100.0  100.0
  main.randomList                 Main                               147           1   62.0   55.5    62.0   55.5
  main.arr                        Main                               142           1    0.0    0.0     0.0    0.0
   streamToAssocList              Main                               143           1    0.0    0.0     0.0    0.0
    streamToAssocList.go          Main                               146           5    0.0    0.0     0.0    0.0
  main.pairList                   Main                               137           1    0.0    0.0     9.5   16.5
   consPairStream                 Main                               138           1    0.7    0.9     9.5   16.5
    consPairStream.ys             Main                               140           1    4.3    7.8     4.3    7.8
    consPairStream.xs             Main                               139           1    4.5    7.8     4.5    7.8
  main.initConfig                 Main                               122           1    0.0    0.0     0.0    0.0
   logLikelihood                  Main                               163           0    0.0    0.0     0.0    0.0
   logPrior                       Main                               161           5    0.0    0.0     0.0    0.0
  main.sim                        Main                               118           1    1.0    2.2    28.6   28.1
   simKernel                      Main                               120           0    4.8    5.1    27.6   25.8 

我不确定如何准确地解释这一点,但随机双打的懒惰流randomList让我畏缩。我不知道如何改进。

1 个答案:

答案 0 :(得分:3)

我用一个工作示例更新了hpaste。看起来匪徒是:

  • 缺少三个SimConfig字段中的严格注释:simArraylogPlogL
    data SimConfig = SimConfig {
            numDimensions :: !Int            -- strict
        ,   numWalkers    :: !Int            -- strict
        ,   simArray      :: !(IntMap [Double]) -- strict spine
        ,   logP          :: !(Seq Double)      -- strict spine
        ,   logL          :: !(Seq Double)      -- strict spine
        ,   pairStream    :: [(Int, Int)]    -- lazy
        ,   doubleStream  :: [Double]        -- lazy 
        } deriving Show
  • newConfig从未在simKernel循环中评估,因为State是懒惰的。另一种选择是使用严格的State monad。

    put $! newConfig
    
  • execState ... replicateM也构建了thunk。我最初将其替换为foldl'并将execState移到了折叠中,但我认为在replicateM_中交换相同且更易于阅读:

    let sim = logL $ execState (replicateM_ epochs simKernel) initConfig
    --  sim = logL $ foldl' (const . execState simKernel) initConfig [1..epochs]
    

mapM .. replicate的一些来电已被replicateM取代。特别值得注意的是consPairList,它可以减少内存使用量。仍然有改进的余地,但最低的悬挂水果涉及不安全的互联网......所以我停了下来。

我不知道输出结果是否符合您的要求:

fromList [-4.287033457733427,-1.8000404912760795,-5.581988678626085,-0.9362372340483293,-5.267791907985331]

但这是统计数据:

     268,004,448 bytes allocated in the heap
      70,753,952 bytes copied during GC
      16,014,224 bytes maximum residency (7 sample(s))
       1,372,456 bytes maximum slop
              40 MB total memory in use (0 MB lost due to fragmentation)

                                    Tot time (elapsed)  Avg pause  Max pause
  Gen  0       490 colls,     0 par    0.05s    0.05s     0.0001s    0.0012s
  Gen  1         7 colls,     0 par    0.04s    0.05s     0.0076s    0.0209s

  INIT    time    0.00s  (  0.00s elapsed)
  MUT     time    0.12s  (  0.12s elapsed)
  GC      time    0.09s  (  0.10s elapsed)
  EXIT    time    0.00s  (  0.00s elapsed)
  Total   time    0.21s  (  0.22s elapsed)

  %GC     time      42.2%  (45.1% elapsed)

  Alloc rate    2,241,514,569 bytes per MUT second

  Productivity  57.8% of total user, 53.7% of total elapsed