Given an infinite positive integer array or say a stream of positive integers, find out the first five numbers whose sum is twenty.
通过阅读问题陈述,它首先似乎是0-1 Knapsack
问题,但我很困惑,可以在整数流上使用0-1 Knapsack algo
。假设我为上述问题编写了一个递归程序。
int knapsack(int sum, int count, int idx)
{
if (sum == 0 && count == 0)
return 1;
if ((sum == 0 && count != 0) || (sum != 0 && count == 0))
return 0;
if (arr[idx] > 20) //element cann't be included.
return knapsack(sum, count idx + 1);
return max(knapsack(sum, count, idx +1), knapsack(sum - arr[idx], count -1, idx + 1));
}
现在,当上述函数调用无限数组时,max
函数中的第一个调用即knapsack(sum, count, idx +1)
将永远不会返回,因为它将继续忽略当前元素。即使我们在max
函数中更改了调用的顺序,仍有可能第一次调用永远不会返回。有没有办法在这种情况下应用knapsack
算法?
答案 0 :(得分:5)
如果您只使用正整数,则此方法有效。
基本上保留一个列表,列出您可以访问前20个号码中的任何一个,并且每当您处理新号码时,都会相应地处理此列表。
def update(dictlist, num):
dk = dictlist.keys()
for i in dk:
if i+num <=20:
for j in dictlist[i]:
listlen = len(dictlist[i][j]) + 1
if listlen >5:
continue
if i+num not in dictlist or listlen not in dictlist[i+num]:
dictlist[i+num][listlen] = dictlist[i][j]+[num]
if num not in dictlist:
dictlist[num]= {}
dictlist[num][1] = [num]
return dictlist
dictlist = {}
for x in infinite_integer_stream:
dictlist = update(dictlist,x)
if 20 in dictlist and 5 in dictlist[20]:
print dictlist[20][5]
break
此代码可能有一些小错误,我现在没时间调试它。但基本上dictlist [i] [j]存储一个总长为i的j长度列表。
答案 1 :(得分:0)
德尔福代码:
var
PossibleSums: array[1..4, 0..20] of Integer;
Value, i, j: Integer;
s: string;
begin
s := '';
for j := 1 to 4 do
for i := 0 to 20 do
PossibleSums[j, i] := -1;
while True do begin
Value := 1 + Random(20); // stream emulation
Memo1.Lines.Add(IntToStr(Value));
if PossibleSums[4, 20 - Value] <> -1 then begin
//we just have found 5th number to make the full sum
s := IntToStr(Value);
i := 20 - Value;
for j := 4 downto 1 do begin
//unwind storage chain
s := IntToStr(PossibleSums[j, i]) + ' ' + s;
i := i - PossibleSums[j, i];
end;
Memo1.Lines.Add(s);
Break;
end;
for j := 3 downto 1 do
for i := 0 to 20 - Value do
if (PossibleSums[j, i] <> -1) and (PossibleSums[j + 1, i + Value] = -1) then
PossibleSums[j + 1, i + Value] := Value;
if PossibleSums[1, Value] = -1 then
PossibleSums[1, Value] := Value;
end;
end;
输出:
4
8
9
2
10
2
17
2
4 2 10 2 2