我正在尝试用Python解决生日悖论。我很接近,但最后一块让我感到茫然。我正在使用随机生成给定范围和要创建的项目数的数字列表。这很有效。
然后我检查列表(上面生成的)是否有重复。这很有效。
然后我尝试生成给定(n)个列表。这是我遇到麻烦的地方。它生成一个列表然后返回“NoneType”不可迭代。令我困惑的是,列表已生成,但Python并未将其视为列表。
以下是代码:
def make_bd(n, r):
"""Generates (r) numbers of birthdays in a range (n)."""
import random
t = [random.randrange(n) for i in range(r)]
print (t)
def has_dupe(test):
"""Here I test to see if I can detect a duplicate birthday.
This is based on problem #4."""
d = []
count = 0
for number in test:
if number in d:
count = count + 1
d.append(number)
if count >= 1:
return True
return False
def dupebd(n,r,t):
count_dupe = 0
for i in range(n):
if has_dupe(make_bd(r,t)):
count_dupe = count_dupe + 1
print (float(count)/n)
dupebd(50,365,23)
结果如下:
>>> has_dupe(make_bd(50,6))
[13, 3, 8, 29, 34, 44]
Traceback (most recent call last):
File "<pyshell#45>", line 1, in <module>
has_dupe(make_bd(50,6))
File "<pyshell#44>", line 7, in has_dupe
for number in test:
TypeError: 'NoneType' object is not iterable
答案 0 :(得分:7)
在第5行中,您打印t
但不返回,以便make_bd
返回None
。将行更改为
return t
答案 1 :(得分:0)
from random import randint
def make_bd(n, d):
"""Generates n birthdays in range(d)."""
return [randint(1, d) for _ in xrange(n)]
def has_dupe(bd):
"""Test to see if list of birthdays contains one or more duplicates.
This is based on problem #4.
"""
return len(set(bd)) < len(bd)
def dupe_bd(n, d, t):
dupes = sum(has_dupe(make_bd(n,d)) for _ in xrange(t))
return dupes/float(t)
def exactProbability(n, d):
probUnique = 1.0
d = float(d)
for i in xrange(n):
probUnique *= (d - i)/d
return 1.0 - probUnique
for n in xrange(18,26):
print("{:d} people: {:0.4f} probability of shared birthday (exact: {:0.4f})".format(n, dupe_bd(n, 365, 1000), exactProbability(n, 365)))
给出
18 people: 0.3640 probability of shared birthday (exact: 0.3469)
19 people: 0.3790 probability of shared birthday (exact: 0.3791)
20 people: 0.4020 probability of shared birthday (exact: 0.4114)
21 people: 0.4070 probability of shared birthday (exact: 0.4437)
22 people: 0.4720 probability of shared birthday (exact: 0.4757)
23 people: 0.4980 probability of shared birthday (exact: 0.5073)
24 people: 0.5290 probability of shared birthday (exact: 0.5383)
25 people: 0.5450 probability of shared birthday (exact: 0.5687)