带通在C ++中的butterworth过滤器实现

时间:2012-04-29 15:01:47

标签: c++ matlab image-processing filter

我正在使用openCV和c ++实现一个图像分析算法,但我发现openCV并没有正式使用Butterworth Bandpass过滤器的任何功能。 在我的项目中,我必须将时间序列的像素传递到Butterworth 5阶滤波器中,该函数将返回滤波的时间序列像素。巴特沃思(像素系列,顺序,频率),如果你有任何想法帮助我如何开始请告诉我。谢谢

编辑: 在获得帮助后,我最终想出了以下代码。它可以计算分子系数和分母系数,但问题是有些数字与matlab结果不一样。这是我的代码:

#include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>

using namespace std;

#define N 10 //The number of images which construct a time series for each pixel
#define PI 3.14159

double *ComputeLP( int FilterOrder )
{
    double *NumCoeffs;
    int m;
    int i;

    NumCoeffs = (double *)calloc( FilterOrder+1, sizeof(double) );
    if( NumCoeffs == NULL ) return( NULL );

    NumCoeffs[0] = 1;
    NumCoeffs[1] = FilterOrder;
    m = FilterOrder/2;
    for( i=2; i <= m; ++i)
    {
        NumCoeffs[i] =(double) (FilterOrder-i+1)*NumCoeffs[i-1]/i;
        NumCoeffs[FilterOrder-i]= NumCoeffs[i];
    }
    NumCoeffs[FilterOrder-1] = FilterOrder;
    NumCoeffs[FilterOrder] = 1;

    return NumCoeffs;
}

double *ComputeHP( int FilterOrder )
{
    double *NumCoeffs;
    int i;

    NumCoeffs = ComputeLP(FilterOrder);
    if(NumCoeffs == NULL ) return( NULL );

    for( i = 0; i <= FilterOrder; ++i)
        if( i % 2 ) NumCoeffs[i] = -NumCoeffs[i];

    return NumCoeffs;
}

double *TrinomialMultiply( int FilterOrder, double *b, double *c )
{
    int i, j;
    double *RetVal;

    RetVal = (double *)calloc( 4 * FilterOrder, sizeof(double) );
    if( RetVal == NULL ) return( NULL );

    RetVal[2] = c[0];
    RetVal[3] = c[1];
    RetVal[0] = b[0];
    RetVal[1] = b[1];

    for( i = 1; i < FilterOrder; ++i )
    {
        RetVal[2*(2*i+1)]   += c[2*i] * RetVal[2*(2*i-1)]   - c[2*i+1] * RetVal[2*(2*i-1)+1];
        RetVal[2*(2*i+1)+1] += c[2*i] * RetVal[2*(2*i-1)+1] + c[2*i+1] * RetVal[2*(2*i-1)];

        for( j = 2*i; j > 1; --j )
        {
            RetVal[2*j]   += b[2*i] * RetVal[2*(j-1)]   - b[2*i+1] * RetVal[2*(j-1)+1] +
                c[2*i] * RetVal[2*(j-2)]   - c[2*i+1] * RetVal[2*(j-2)+1];
            RetVal[2*j+1] += b[2*i] * RetVal[2*(j-1)+1] + b[2*i+1] * RetVal[2*(j-1)] +
                c[2*i] * RetVal[2*(j-2)+1] + c[2*i+1] * RetVal[2*(j-2)];
        }

        RetVal[2] += b[2*i] * RetVal[0] - b[2*i+1] * RetVal[1] + c[2*i];
        RetVal[3] += b[2*i] * RetVal[1] + b[2*i+1] * RetVal[0] + c[2*i+1];
        RetVal[0] += b[2*i];
        RetVal[1] += b[2*i+1];
    }

    return RetVal;
}

double *ComputeNumCoeffs(int FilterOrder)
{
    double *TCoeffs;
    double *NumCoeffs;
    int i;

    NumCoeffs = (double *)calloc( 2*FilterOrder+1, sizeof(double) );
    if( NumCoeffs == NULL ) return( NULL );

    TCoeffs = ComputeHP(FilterOrder);
    if( TCoeffs == NULL ) return( NULL );

    for( i = 0; i < FilterOrder; ++i)
    {
        NumCoeffs[2*i] = TCoeffs[i];
        NumCoeffs[2*i+1] = 0.0;
    }
    NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];

    free(TCoeffs);

    return NumCoeffs;
}

double *ComputeDenCoeffs( int FilterOrder, double Lcutoff, double Ucutoff )
{
    int k;            // loop variables
    double theta;     // PI * (Ucutoff - Lcutoff) / 2.0
    double cp;        // cosine of phi
    double st;        // sine of theta
    double ct;        // cosine of theta
    double s2t;       // sine of 2*theta
    double c2t;       // cosine 0f 2*theta
    double *RCoeffs;     // z^-2 coefficients
    double *TCoeffs;     // z^-1 coefficients
    double *DenomCoeffs;     // dk coefficients
    double PoleAngle;      // pole angle
    double SinPoleAngle;     // sine of pole angle
    double CosPoleAngle;     // cosine of pole angle
    double a;         // workspace variables

    cp = cos(PI * (Ucutoff + Lcutoff) / 2.0);
    theta = PI * (Ucutoff - Lcutoff) / 2.0;
    st = sin(theta);
    ct = cos(theta);
    s2t = 2.0*st*ct;        // sine of 2*theta
    c2t = 2.0*ct*ct - 1.0;  // cosine of 2*theta

    RCoeffs = (double *)calloc( 2 * FilterOrder, sizeof(double) );
    TCoeffs = (double *)calloc( 2 * FilterOrder, sizeof(double) );

    for( k = 0; k < FilterOrder; ++k )
    {
        PoleAngle = PI * (double)(2*k+1)/(double)(2*FilterOrder);
        SinPoleAngle = sin(PoleAngle);
        CosPoleAngle = cos(PoleAngle);
        a = 1.0 + s2t*SinPoleAngle;
        RCoeffs[2*k] = c2t/a;
        RCoeffs[2*k+1] = s2t*CosPoleAngle/a;
        TCoeffs[2*k] = -2.0*cp*(ct+st*SinPoleAngle)/a;
        TCoeffs[2*k+1] = -2.0*cp*st*CosPoleAngle/a;
    }

    DenomCoeffs = TrinomialMultiply(FilterOrder, TCoeffs, RCoeffs );
    free(TCoeffs);
    free(RCoeffs);

    DenomCoeffs[1] = DenomCoeffs[0];
    DenomCoeffs[0] = 1.0;
    for( k = 3; k <= 2*FilterOrder; ++k )
        DenomCoeffs[k] = DenomCoeffs[2*k-2];


    return DenomCoeffs;
}

void filter(int ord, double *a, double *b, int np, double *x, double *y)
{
    int i,j;
    y[0]=b[0] * x[0];
    for (i=1;i<ord+1;i++)
    {
        y[i]=0.0;
        for (j=0;j<i+1;j++)
            y[i]=y[i]+b[j]*x[i-j];
        for (j=0;j<i;j++)
            y[i]=y[i]-a[j+1]*y[i-j-1];
    }
    for (i=ord+1;i<np+1;i++)
    {
        y[i]=0.0;
        for (j=0;j<ord+1;j++)
            y[i]=y[i]+b[j]*x[i-j];
        for (j=0;j<ord;j++)
            y[i]=y[i]-a[j+1]*y[i-j-1];
    }
}




int main(int argc, char *argv[])
{
    //Frequency bands is a vector of values - Lower Frequency Band and Higher Frequency Band

    //First value is lower cutoff and second value is higher cutoff
    double FrequencyBands[2] = {0.25,0.375};//these values are as a ratio of f/fs, where fs is sampling rate, and f is cutoff frequency
    //and therefore should lie in the range [0 1]
    //Filter Order

    int FiltOrd = 5;

    //Pixel Time Series
    /*int PixelTimeSeries[N];
    int outputSeries[N];
    */
    //Create the variables for the numerator and denominator coefficients
    double *DenC = 0;
    double *NumC = 0;
    //Pass Numerator Coefficients and Denominator Coefficients arrays into function, will return the same

    NumC = ComputeNumCoeffs(FiltOrd);
    for(int k = 0; k<11; k++)
    {
        printf("NumC is: %lf\n", NumC[k]);
    }
    //is A in matlab function and the numbers are correct
    DenC = ComputeDenCoeffs(FiltOrd, FrequencyBands[0], FrequencyBands[1]);
    for(int k = 0; k<11; k++)
    {
        printf("DenC is: %lf\n", DenC[k]);
    }
    double y[5];
    double x[5]={1,2,3,4,5};
    filter(5, DenC, NumC, 5, x, y);    
    return 1;
}

我为我的代码得到了这个结果:

  

B = 1,0,-5,0,10,0,-10,0,5,0,-1   A = 1.000000000000000,-4.945988709743181,13.556489496973796,-24.700711850327743,   32.994881546824828,-33.180726698160655,25.546126213403539,-14.802008410165968,   6.285430089797051,-1.772929809750849,0.277753012228403

但如果我想在MATLAB中测试相同频段的系数,我会得到以下结果:

>> [B, A]=butter(5, [0.25,0.375])
     

B = 0.0002,0,-0.0008,0,0.0016,0,-0.0016,0,0.0008,0,-0.0002

     

A = 1.0000,-4.9460,13.5565,-24.7007,32.9948,-33.1806,25.5461,-14.8020,6.2854,-1.7729,0.2778

我测试了这个网站:http://www.exstrom.com/journal/sigproc/ code,但结果与我的相同,而不是matlab。谁知道为什么?或者如何获得与matlab工具箱相同的结果?

4 个答案:

答案 0 :(得分:6)

我知道这是旧帖子上的帖子,我通常会将其留作评论,但我显然无法做到这一点。

在任何情况下,对于搜索类似代码的人,我想我会发布此代码来源的链接(它还有其他类型的Butterworth滤波器系数和其他一些很酷的信号处理代码的C代码)。

代码位于: http://www.exstrom.com/journal/sigproc/

此外,我认为有一段代码可以为您计算所述比例因子。

/**********************************************************************
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
The scaling factor is what the c coefficients must be multiplied by so
that the filter response has a maximum value of 1.
*/

double sf_bwbp( int n, double f1f, double f2f )
{
    int k;            // loop variables
    double ctt;       // cotangent of theta
    double sfr, sfi;  // real and imaginary parts of the scaling factor
    double parg;      // pole angle
    double sparg;     // sine of pole angle
    double cparg;     // cosine of pole angle
    double a, b, c;   // workspace variables

    ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
    sfr = 1.0;
    sfi = 0.0;

    for( k = 0; k < n; ++k )
    {
        parg = M_PI * (double)(2*k+1)/(double)(2*n);
        sparg = ctt + sin(parg);
        cparg = cos(parg);
        a = (sfr + sfi)*(sparg - cparg);
        b = sfr * sparg;
        c = -sfi * cparg;
        sfr = b - c;
        sfi = a - b - c;
    }

    return( 1.0 / sfr );
}

答案 1 :(得分:5)

我终于找到了它。 我只需要将以下代码从matlab源代码实现到c ++。 “the_mandrill”是对的,我需要将归一化常数添加到系数中:

kern = exp(-j*w*(0:length(b)-1));
b = real(b*(kern*den(:))/(kern*b(:)));

修改 这是最终版本,整个代码将返回完全等于MATLAB的数字:

double *ComputeNumCoeffs(int FilterOrder,double Lcutoff, double Ucutoff, double *DenC)
{
    double *TCoeffs;
    double *NumCoeffs;
    std::complex<double> *NormalizedKernel;
    double Numbers[11]={0,1,2,3,4,5,6,7,8,9,10};
    int i;

    NumCoeffs = (double *)calloc( 2*FilterOrder+1, sizeof(double) );
    if( NumCoeffs == NULL ) return( NULL );

    NormalizedKernel = (std::complex<double> *)calloc( 2*FilterOrder+1, sizeof(std::complex<double>) );
    if( NormalizedKernel == NULL ) return( NULL );

    TCoeffs = ComputeHP(FilterOrder);
    if( TCoeffs == NULL ) return( NULL );

    for( i = 0; i < FilterOrder; ++i)
    {
        NumCoeffs[2*i] = TCoeffs[i];
        NumCoeffs[2*i+1] = 0.0;
    }
    NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
    double cp[2];
    double Bw, Wn;
    cp[0] = 2*2.0*tan(PI * Lcutoff/ 2.0);
    cp[1] = 2*2.0*tan(PI * Ucutoff / 2.0);

    Bw = cp[1] - cp[0];
    //center frequency
    Wn = sqrt(cp[0]*cp[1]);
    Wn = 2*atan2(Wn,4);
    double kern;
    const std::complex<double> result = std::complex<double>(-1,0);

    for(int k = 0; k<11; k++)
    {
        NormalizedKernel[k] = std::exp(-sqrt(result)*Wn*Numbers[k]);
    }
    double b=0;
    double den=0;
    for(int d = 0; d<11; d++)
    {
        b+=real(NormalizedKernel[d]*NumCoeffs[d]);
        den+=real(NormalizedKernel[d]*DenC[d]);
    }
    for(int c = 0; c<11; c++)
    {
        NumCoeffs[c]=(NumCoeffs[c]*den)/b;
    }

    free(TCoeffs);
    return NumCoeffs;
}

答案 2 :(得分:0)

有些代码可以在网上实现Butterworth过滤器。如果您使用源代码尝试获取与MATLAB结果匹配的结果,则会出现相同的问题。基本上从代码中获得的结果尚未规范化,并且源代码中有一个变量 sff < / strong>在bwhp.c中。如果将其设置为1,将很容易解决问题。 我建议您使用此源代码, 源代码和用法可以在here

中找到

答案 3 :(得分:0)

我在程序中添加了功能ComputeNumCoeffs的最终版本,并修复了“ FilterOrder”(k <11至k <2 * FiltOrd + 1)。也许它将节省某人的时间。 f1 = 0.5Gz,f2 = 10Gz,fs = 127Gz / 2

在MatLab中

a={1.000000000000000,-3.329746259105707, 4.180522138699884,-2.365540522960743,0.514875789136976};
b={0.041065495448784, 0.000000000000000,-0.082130990897568, 0.000000000000000,0.041065495448784};

程序:

#include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>

#include <complex>

using namespace std;

#define N 10 //The number of images which construct a time series for each pixel
#define PI 3.1415926535897932384626433832795

double *ComputeLP(int FilterOrder)
{
    double *NumCoeffs;
    int m;
    int i;

    NumCoeffs = (double *)calloc(FilterOrder+1, sizeof(double));
    if(NumCoeffs == NULL) return(NULL);

    NumCoeffs[0] = 1;
    NumCoeffs[1] = FilterOrder;
    m = FilterOrder/2;
    for(i=2; i <= m; ++i)
    {
     NumCoeffs[i] =(double) (FilterOrder-i+1)*NumCoeffs[i-1]/i;
     NumCoeffs[FilterOrder-i]= NumCoeffs[i];
    }
    NumCoeffs[FilterOrder-1] = FilterOrder;
    NumCoeffs[FilterOrder] = 1;

    return NumCoeffs;
}

double *ComputeHP(int FilterOrder)
{
    double *NumCoeffs;
    int i;

    NumCoeffs = ComputeLP(FilterOrder);
    if(NumCoeffs == NULL) return(NULL);

    for(i = 0; i <= FilterOrder; ++i)
     if(i % 2) NumCoeffs[i] = -NumCoeffs[i];

    return NumCoeffs;
}

double *TrinomialMultiply(int FilterOrder, double *b, double *c)
{
    int i, j;
    double *RetVal;

    RetVal = (double *)calloc(4 * FilterOrder, sizeof(double));
    if(RetVal == NULL) return(NULL);

    RetVal[2] = c[0];
    RetVal[3] = c[1];
    RetVal[0] = b[0];
    RetVal[1] = b[1];

    for(i = 1; i < FilterOrder; ++i)
    {
     RetVal[2*(2*i+1)] += c[2*i] * RetVal[2*(2*i-1)] - c[2*i+1] * RetVal[2*(2*i-1)+1];
     RetVal[2*(2*i+1)+1] += c[2*i] * RetVal[2*(2*i-1)+1] + c[2*i+1] * RetVal[2*(2*i-1)];

     for(j = 2*i; j > 1; --j)
     {
      RetVal[2*j] += b[2*i] * RetVal[2*(j-1)] - b[2*i+1] * RetVal[2*(j-1)+1] +
       c[2*i] * RetVal[2*(j-2)] - c[2*i+1] * RetVal[2*(j-2)+1];
      RetVal[2*j+1] += b[2*i] * RetVal[2*(j-1)+1] + b[2*i+1] * RetVal[2*(j-1)] +
       c[2*i] * RetVal[2*(j-2)+1] + c[2*i+1] * RetVal[2*(j-2)];
     }

     RetVal[2] += b[2*i] * RetVal[0] - b[2*i+1] * RetVal[1] + c[2*i];
     RetVal[3] += b[2*i] * RetVal[1] + b[2*i+1] * RetVal[0] + c[2*i+1];
     RetVal[0] += b[2*i];
     RetVal[1] += b[2*i+1];
    }
    return RetVal;
}

double *ComputeNumCoeffs(int FilterOrder,double Lcutoff, double Ucutoff, double *DenC)
{
    double *TCoeffs;
    double *NumCoeffs;
    std::complex<double> *NormalizedKernel;
    double Numbers[11]={0,1,2,3,4,5,6,7,8,9,10};
    int i;

    NumCoeffs = (double *)calloc(2*FilterOrder+1, sizeof(double));
    if(NumCoeffs == NULL) return(NULL);

    NormalizedKernel = (std::complex<double> *)calloc(2*FilterOrder+1, sizeof(std::complex<double>));
    if(NormalizedKernel == NULL) return(NULL);

    TCoeffs = ComputeHP(FilterOrder);
    if(TCoeffs == NULL) return(NULL);

    for(i = 0; i < FilterOrder; ++i)
    {
     NumCoeffs[2*i] = TCoeffs[i];
     NumCoeffs[2*i+1] = 0.0;
    }
    NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
    double cp[2];
    //double Bw;
    double Wn;
    cp[0] = 2*2.0*tan(PI * Lcutoff/ 2.0);
    cp[1] = 2*2.0*tan(PI * Ucutoff/2.0);

    //Bw = cp[1] - cp[0];
    //center frequency
    Wn = sqrt(cp[0]*cp[1]);
    Wn = 2*atan2(Wn,4);
    //double kern;
    const std::complex<double> result = std::complex<double>(-1,0);

    for(int k = 0; k<2*FilterOrder+1; k++)
    {
     NormalizedKernel[k] = std::exp(-sqrt(result)*Wn*Numbers[k]);
    }
    double b=0;
    double den=0;
    for(int d = 0; d<2*FilterOrder+1; d++)
    {
     b+=real(NormalizedKernel[d]*NumCoeffs[d]);
     den+=real(NormalizedKernel[d]*DenC[d]);
    }
    for(int c = 0; c<2*FilterOrder+1; c++)
    {
     NumCoeffs[c]=(NumCoeffs[c]*den)/b;
    }

    free(TCoeffs);
    return NumCoeffs;
}

double *ComputeDenCoeffs(int FilterOrder, double Lcutoff, double Ucutoff)
{
    int k;   // loop variables
    double theta;  // PI * (Ucutoff - Lcutoff)/2.0
    double cp;  // cosine of phi
    double st;  // sine of theta
    double ct;  // cosine of theta
    double s2t;  // sine of 2*theta
    double c2t;  // cosine 0f 2*theta
    double *RCoeffs;  // z^-2 coefficients
    double *TCoeffs;  // z^-1 coefficients
    double *DenomCoeffs;  // dk coefficients
    double PoleAngle;  // pole angle
    double SinPoleAngle;  // sine of pole angle
    double CosPoleAngle;  // cosine of pole angle
    double a;   // workspace variables

    cp = cos(PI * (Ucutoff + Lcutoff)/2.0);
    theta = PI * (Ucutoff - Lcutoff)/2.0;
    st = sin(theta);
    ct = cos(theta);
    s2t = 2.0*st*ct;  // sine of 2*theta
    c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta

    RCoeffs = (double *)calloc(2 * FilterOrder, sizeof(double));
    TCoeffs = (double *)calloc(2 * FilterOrder, sizeof(double));

    for(k = 0; k < FilterOrder; ++k)
    {
     PoleAngle = PI * (double)(2*k+1)/(double)(2*FilterOrder);
     SinPoleAngle = sin(PoleAngle);
     CosPoleAngle = cos(PoleAngle);
     a = 1.0 + s2t*SinPoleAngle;
     RCoeffs[2*k] = c2t/a;
     RCoeffs[2*k+1] = s2t*CosPoleAngle/a;
     TCoeffs[2*k] = -2.0*cp*(ct+st*SinPoleAngle)/a;
     TCoeffs[2*k+1] = -2.0*cp*st*CosPoleAngle/a;
    }

    DenomCoeffs = TrinomialMultiply(FilterOrder, TCoeffs, RCoeffs);
    free(TCoeffs);
    free(RCoeffs);

    DenomCoeffs[1] = DenomCoeffs[0];
    DenomCoeffs[0] = 1.0;
    for(k = 3; k <= 2*FilterOrder; ++k)
     DenomCoeffs[k] = DenomCoeffs[2*k-2];


    return DenomCoeffs;
}

void filter(int ord, double *a, double *b, int np, double *x, double *y)
{
    int i,j;
    y[0]=b[0] * x[0];
    for (i=1;i<ord+1;i++)
    {
     y[i]=0.0;
     for (j=0;j<i+1;j++)
      y[i]=y[i]+b[j]*x[i-j];
     for (j=0;j<i;j++)
      y[i]=y[i]-a[j+1]*y[i-j-1];
    }
    for (i=ord+1;i<np+1;i++)
    {
     y[i]=0.0;
     for (j=0;j<ord+1;j++)
      y[i]=y[i]+b[j]*x[i-j];
     for (j=0;j<ord;j++)
      y[i]=y[i]-a[j+1]*y[i-j-1];
    }
}

int main(int argc, char *argv[])
{
    (void)argc;
    (void)argv;
    //Frequency bands is a vector of values - Lower Frequency Band and Higher Frequency Band

    //First value is lower cutoff and second value is higher cutoff
    //f1 = 0.5Gz f2=10Gz
    //fs=127Gz
    //Kotelnikov/2=Nyquist (127/2)
    double FrequencyBands[2] = {0.5/(127.0/2.0),10.0/(127.0/2.0)};//these values are as a ratio of f/fs, where fs is sampling rate, and f is cutoff frequency
    //and therefore should lie in the range [0 1]
    //Filter Order
    int FiltOrd = 2;//5;

    //Pixel Time Series
    /*int PixelTimeSeries[N];
    int outputSeries[N];
    */
    //Create the variables for the numerator and denominator coefficients
    double *DenC = 0;
    double *NumC = 0;
    //Pass Numerator Coefficients and Denominator Coefficients arrays into function, will return the same

    printf("\n");

    //is A in matlab function and the numbers are correct
    DenC = ComputeDenCoeffs(FiltOrd, FrequencyBands[0], FrequencyBands[1]);
    for(int k = 0; k<2*FiltOrd+1; k++)
    {
     printf("DenC is: %lf\n", DenC[k]);
    }

    printf("\n");

    NumC = ComputeNumCoeffs(FiltOrd,FrequencyBands[0],FrequencyBands[1],DenC);
    for(int k = 0; k<2*FiltOrd+1; k++)
    {
     printf("NumC is: %lf\n", NumC[k]);
    }


    double y[5];
    double x[5]={1,2,3,4,5};
    filter(5, DenC, NumC, 5, x, y);
    return 1;
}