我正在使用openCV和c ++实现一个图像分析算法,但我发现openCV并没有正式使用Butterworth Bandpass过滤器的任何功能。 在我的项目中,我必须将时间序列的像素传递到Butterworth 5阶滤波器中,该函数将返回滤波的时间序列像素。巴特沃思(像素系列,顺序,频率),如果你有任何想法帮助我如何开始请告诉我。谢谢
编辑: 在获得帮助后,我最终想出了以下代码。它可以计算分子系数和分母系数,但问题是有些数字与matlab结果不一样。这是我的代码:
#include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>
using namespace std;
#define N 10 //The number of images which construct a time series for each pixel
#define PI 3.14159
double *ComputeLP( int FilterOrder )
{
double *NumCoeffs;
int m;
int i;
NumCoeffs = (double *)calloc( FilterOrder+1, sizeof(double) );
if( NumCoeffs == NULL ) return( NULL );
NumCoeffs[0] = 1;
NumCoeffs[1] = FilterOrder;
m = FilterOrder/2;
for( i=2; i <= m; ++i)
{
NumCoeffs[i] =(double) (FilterOrder-i+1)*NumCoeffs[i-1]/i;
NumCoeffs[FilterOrder-i]= NumCoeffs[i];
}
NumCoeffs[FilterOrder-1] = FilterOrder;
NumCoeffs[FilterOrder] = 1;
return NumCoeffs;
}
double *ComputeHP( int FilterOrder )
{
double *NumCoeffs;
int i;
NumCoeffs = ComputeLP(FilterOrder);
if(NumCoeffs == NULL ) return( NULL );
for( i = 0; i <= FilterOrder; ++i)
if( i % 2 ) NumCoeffs[i] = -NumCoeffs[i];
return NumCoeffs;
}
double *TrinomialMultiply( int FilterOrder, double *b, double *c )
{
int i, j;
double *RetVal;
RetVal = (double *)calloc( 4 * FilterOrder, sizeof(double) );
if( RetVal == NULL ) return( NULL );
RetVal[2] = c[0];
RetVal[3] = c[1];
RetVal[0] = b[0];
RetVal[1] = b[1];
for( i = 1; i < FilterOrder; ++i )
{
RetVal[2*(2*i+1)] += c[2*i] * RetVal[2*(2*i-1)] - c[2*i+1] * RetVal[2*(2*i-1)+1];
RetVal[2*(2*i+1)+1] += c[2*i] * RetVal[2*(2*i-1)+1] + c[2*i+1] * RetVal[2*(2*i-1)];
for( j = 2*i; j > 1; --j )
{
RetVal[2*j] += b[2*i] * RetVal[2*(j-1)] - b[2*i+1] * RetVal[2*(j-1)+1] +
c[2*i] * RetVal[2*(j-2)] - c[2*i+1] * RetVal[2*(j-2)+1];
RetVal[2*j+1] += b[2*i] * RetVal[2*(j-1)+1] + b[2*i+1] * RetVal[2*(j-1)] +
c[2*i] * RetVal[2*(j-2)+1] + c[2*i+1] * RetVal[2*(j-2)];
}
RetVal[2] += b[2*i] * RetVal[0] - b[2*i+1] * RetVal[1] + c[2*i];
RetVal[3] += b[2*i] * RetVal[1] + b[2*i+1] * RetVal[0] + c[2*i+1];
RetVal[0] += b[2*i];
RetVal[1] += b[2*i+1];
}
return RetVal;
}
double *ComputeNumCoeffs(int FilterOrder)
{
double *TCoeffs;
double *NumCoeffs;
int i;
NumCoeffs = (double *)calloc( 2*FilterOrder+1, sizeof(double) );
if( NumCoeffs == NULL ) return( NULL );
TCoeffs = ComputeHP(FilterOrder);
if( TCoeffs == NULL ) return( NULL );
for( i = 0; i < FilterOrder; ++i)
{
NumCoeffs[2*i] = TCoeffs[i];
NumCoeffs[2*i+1] = 0.0;
}
NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
free(TCoeffs);
return NumCoeffs;
}
double *ComputeDenCoeffs( int FilterOrder, double Lcutoff, double Ucutoff )
{
int k; // loop variables
double theta; // PI * (Ucutoff - Lcutoff) / 2.0
double cp; // cosine of phi
double st; // sine of theta
double ct; // cosine of theta
double s2t; // sine of 2*theta
double c2t; // cosine 0f 2*theta
double *RCoeffs; // z^-2 coefficients
double *TCoeffs; // z^-1 coefficients
double *DenomCoeffs; // dk coefficients
double PoleAngle; // pole angle
double SinPoleAngle; // sine of pole angle
double CosPoleAngle; // cosine of pole angle
double a; // workspace variables
cp = cos(PI * (Ucutoff + Lcutoff) / 2.0);
theta = PI * (Ucutoff - Lcutoff) / 2.0;
st = sin(theta);
ct = cos(theta);
s2t = 2.0*st*ct; // sine of 2*theta
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
RCoeffs = (double *)calloc( 2 * FilterOrder, sizeof(double) );
TCoeffs = (double *)calloc( 2 * FilterOrder, sizeof(double) );
for( k = 0; k < FilterOrder; ++k )
{
PoleAngle = PI * (double)(2*k+1)/(double)(2*FilterOrder);
SinPoleAngle = sin(PoleAngle);
CosPoleAngle = cos(PoleAngle);
a = 1.0 + s2t*SinPoleAngle;
RCoeffs[2*k] = c2t/a;
RCoeffs[2*k+1] = s2t*CosPoleAngle/a;
TCoeffs[2*k] = -2.0*cp*(ct+st*SinPoleAngle)/a;
TCoeffs[2*k+1] = -2.0*cp*st*CosPoleAngle/a;
}
DenomCoeffs = TrinomialMultiply(FilterOrder, TCoeffs, RCoeffs );
free(TCoeffs);
free(RCoeffs);
DenomCoeffs[1] = DenomCoeffs[0];
DenomCoeffs[0] = 1.0;
for( k = 3; k <= 2*FilterOrder; ++k )
DenomCoeffs[k] = DenomCoeffs[2*k-2];
return DenomCoeffs;
}
void filter(int ord, double *a, double *b, int np, double *x, double *y)
{
int i,j;
y[0]=b[0] * x[0];
for (i=1;i<ord+1;i++)
{
y[i]=0.0;
for (j=0;j<i+1;j++)
y[i]=y[i]+b[j]*x[i-j];
for (j=0;j<i;j++)
y[i]=y[i]-a[j+1]*y[i-j-1];
}
for (i=ord+1;i<np+1;i++)
{
y[i]=0.0;
for (j=0;j<ord+1;j++)
y[i]=y[i]+b[j]*x[i-j];
for (j=0;j<ord;j++)
y[i]=y[i]-a[j+1]*y[i-j-1];
}
}
int main(int argc, char *argv[])
{
//Frequency bands is a vector of values - Lower Frequency Band and Higher Frequency Band
//First value is lower cutoff and second value is higher cutoff
double FrequencyBands[2] = {0.25,0.375};//these values are as a ratio of f/fs, where fs is sampling rate, and f is cutoff frequency
//and therefore should lie in the range [0 1]
//Filter Order
int FiltOrd = 5;
//Pixel Time Series
/*int PixelTimeSeries[N];
int outputSeries[N];
*/
//Create the variables for the numerator and denominator coefficients
double *DenC = 0;
double *NumC = 0;
//Pass Numerator Coefficients and Denominator Coefficients arrays into function, will return the same
NumC = ComputeNumCoeffs(FiltOrd);
for(int k = 0; k<11; k++)
{
printf("NumC is: %lf\n", NumC[k]);
}
//is A in matlab function and the numbers are correct
DenC = ComputeDenCoeffs(FiltOrd, FrequencyBands[0], FrequencyBands[1]);
for(int k = 0; k<11; k++)
{
printf("DenC is: %lf\n", DenC[k]);
}
double y[5];
double x[5]={1,2,3,4,5};
filter(5, DenC, NumC, 5, x, y);
return 1;
}
我为我的代码得到了这个结果:
B = 1,0,-5,0,10,0,-10,0,5,0,-1 A = 1.000000000000000,-4.945988709743181,13.556489496973796,-24.700711850327743, 32.994881546824828,-33.180726698160655,25.546126213403539,-14.802008410165968, 6.285430089797051,-1.772929809750849,0.277753012228403
但如果我想在MATLAB中测试相同频段的系数,我会得到以下结果:
>> [B, A]=butter(5, [0.25,0.375])
B = 0.0002,0,-0.0008,0,0.0016,0,-0.0016,0,0.0008,0,-0.0002
A = 1.0000,-4.9460,13.5565,-24.7007,32.9948,-33.1806,25.5461,-14.8020,6.2854,-1.7729,0.2778
我测试了这个网站:http://www.exstrom.com/journal/sigproc/ code,但结果与我的相同,而不是matlab。谁知道为什么?或者如何获得与matlab工具箱相同的结果?
答案 0 :(得分:6)
我知道这是旧帖子上的帖子,我通常会将其留作评论,但我显然无法做到这一点。
在任何情况下,对于搜索类似代码的人,我想我会发布此代码来源的链接(它还有其他类型的Butterworth滤波器系数和其他一些很酷的信号处理代码的C代码)。
代码位于: http://www.exstrom.com/journal/sigproc/
此外,我认为有一段代码可以为您计算所述比例因子。
/**********************************************************************
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
The scaling factor is what the c coefficients must be multiplied by so
that the filter response has a maximum value of 1.
*/
double sf_bwbp( int n, double f1f, double f2f )
{
int k; // loop variables
double ctt; // cotangent of theta
double sfr, sfi; // real and imaginary parts of the scaling factor
double parg; // pole angle
double sparg; // sine of pole angle
double cparg; // cosine of pole angle
double a, b, c; // workspace variables
ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
sfr = 1.0;
sfi = 0.0;
for( k = 0; k < n; ++k )
{
parg = M_PI * (double)(2*k+1)/(double)(2*n);
sparg = ctt + sin(parg);
cparg = cos(parg);
a = (sfr + sfi)*(sparg - cparg);
b = sfr * sparg;
c = -sfi * cparg;
sfr = b - c;
sfi = a - b - c;
}
return( 1.0 / sfr );
}
答案 1 :(得分:5)
我终于找到了它。 我只需要将以下代码从matlab源代码实现到c ++。 “the_mandrill”是对的,我需要将归一化常数添加到系数中:
kern = exp(-j*w*(0:length(b)-1));
b = real(b*(kern*den(:))/(kern*b(:)));
修改强> 这是最终版本,整个代码将返回完全等于MATLAB的数字:
double *ComputeNumCoeffs(int FilterOrder,double Lcutoff, double Ucutoff, double *DenC)
{
double *TCoeffs;
double *NumCoeffs;
std::complex<double> *NormalizedKernel;
double Numbers[11]={0,1,2,3,4,5,6,7,8,9,10};
int i;
NumCoeffs = (double *)calloc( 2*FilterOrder+1, sizeof(double) );
if( NumCoeffs == NULL ) return( NULL );
NormalizedKernel = (std::complex<double> *)calloc( 2*FilterOrder+1, sizeof(std::complex<double>) );
if( NormalizedKernel == NULL ) return( NULL );
TCoeffs = ComputeHP(FilterOrder);
if( TCoeffs == NULL ) return( NULL );
for( i = 0; i < FilterOrder; ++i)
{
NumCoeffs[2*i] = TCoeffs[i];
NumCoeffs[2*i+1] = 0.0;
}
NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
double cp[2];
double Bw, Wn;
cp[0] = 2*2.0*tan(PI * Lcutoff/ 2.0);
cp[1] = 2*2.0*tan(PI * Ucutoff / 2.0);
Bw = cp[1] - cp[0];
//center frequency
Wn = sqrt(cp[0]*cp[1]);
Wn = 2*atan2(Wn,4);
double kern;
const std::complex<double> result = std::complex<double>(-1,0);
for(int k = 0; k<11; k++)
{
NormalizedKernel[k] = std::exp(-sqrt(result)*Wn*Numbers[k]);
}
double b=0;
double den=0;
for(int d = 0; d<11; d++)
{
b+=real(NormalizedKernel[d]*NumCoeffs[d]);
den+=real(NormalizedKernel[d]*DenC[d]);
}
for(int c = 0; c<11; c++)
{
NumCoeffs[c]=(NumCoeffs[c]*den)/b;
}
free(TCoeffs);
return NumCoeffs;
}
答案 2 :(得分:0)
有些代码可以在网上实现Butterworth过滤器。如果您使用源代码尝试获取与MATLAB结果匹配的结果,则会出现相同的问题。基本上从代码中获得的结果尚未规范化,并且源代码中有一个变量 sff < / strong>在bwhp.c中。如果将其设置为1,将很容易解决问题。 我建议您使用此源代码, 源代码和用法可以在here
中找到答案 3 :(得分:0)
我在程序中添加了功能ComputeNumCoeffs的最终版本,并修复了“ FilterOrder”(k <11至k <2 * FiltOrd + 1)。也许它将节省某人的时间。 f1 = 0.5Gz,f2 = 10Gz,fs = 127Gz / 2
在MatLab中
a={1.000000000000000,-3.329746259105707, 4.180522138699884,-2.365540522960743,0.514875789136976};
b={0.041065495448784, 0.000000000000000,-0.082130990897568, 0.000000000000000,0.041065495448784};
程序:
#include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>
#include <complex>
using namespace std;
#define N 10 //The number of images which construct a time series for each pixel
#define PI 3.1415926535897932384626433832795
double *ComputeLP(int FilterOrder)
{
double *NumCoeffs;
int m;
int i;
NumCoeffs = (double *)calloc(FilterOrder+1, sizeof(double));
if(NumCoeffs == NULL) return(NULL);
NumCoeffs[0] = 1;
NumCoeffs[1] = FilterOrder;
m = FilterOrder/2;
for(i=2; i <= m; ++i)
{
NumCoeffs[i] =(double) (FilterOrder-i+1)*NumCoeffs[i-1]/i;
NumCoeffs[FilterOrder-i]= NumCoeffs[i];
}
NumCoeffs[FilterOrder-1] = FilterOrder;
NumCoeffs[FilterOrder] = 1;
return NumCoeffs;
}
double *ComputeHP(int FilterOrder)
{
double *NumCoeffs;
int i;
NumCoeffs = ComputeLP(FilterOrder);
if(NumCoeffs == NULL) return(NULL);
for(i = 0; i <= FilterOrder; ++i)
if(i % 2) NumCoeffs[i] = -NumCoeffs[i];
return NumCoeffs;
}
double *TrinomialMultiply(int FilterOrder, double *b, double *c)
{
int i, j;
double *RetVal;
RetVal = (double *)calloc(4 * FilterOrder, sizeof(double));
if(RetVal == NULL) return(NULL);
RetVal[2] = c[0];
RetVal[3] = c[1];
RetVal[0] = b[0];
RetVal[1] = b[1];
for(i = 1; i < FilterOrder; ++i)
{
RetVal[2*(2*i+1)] += c[2*i] * RetVal[2*(2*i-1)] - c[2*i+1] * RetVal[2*(2*i-1)+1];
RetVal[2*(2*i+1)+1] += c[2*i] * RetVal[2*(2*i-1)+1] + c[2*i+1] * RetVal[2*(2*i-1)];
for(j = 2*i; j > 1; --j)
{
RetVal[2*j] += b[2*i] * RetVal[2*(j-1)] - b[2*i+1] * RetVal[2*(j-1)+1] +
c[2*i] * RetVal[2*(j-2)] - c[2*i+1] * RetVal[2*(j-2)+1];
RetVal[2*j+1] += b[2*i] * RetVal[2*(j-1)+1] + b[2*i+1] * RetVal[2*(j-1)] +
c[2*i] * RetVal[2*(j-2)+1] + c[2*i+1] * RetVal[2*(j-2)];
}
RetVal[2] += b[2*i] * RetVal[0] - b[2*i+1] * RetVal[1] + c[2*i];
RetVal[3] += b[2*i] * RetVal[1] + b[2*i+1] * RetVal[0] + c[2*i+1];
RetVal[0] += b[2*i];
RetVal[1] += b[2*i+1];
}
return RetVal;
}
double *ComputeNumCoeffs(int FilterOrder,double Lcutoff, double Ucutoff, double *DenC)
{
double *TCoeffs;
double *NumCoeffs;
std::complex<double> *NormalizedKernel;
double Numbers[11]={0,1,2,3,4,5,6,7,8,9,10};
int i;
NumCoeffs = (double *)calloc(2*FilterOrder+1, sizeof(double));
if(NumCoeffs == NULL) return(NULL);
NormalizedKernel = (std::complex<double> *)calloc(2*FilterOrder+1, sizeof(std::complex<double>));
if(NormalizedKernel == NULL) return(NULL);
TCoeffs = ComputeHP(FilterOrder);
if(TCoeffs == NULL) return(NULL);
for(i = 0; i < FilterOrder; ++i)
{
NumCoeffs[2*i] = TCoeffs[i];
NumCoeffs[2*i+1] = 0.0;
}
NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
double cp[2];
//double Bw;
double Wn;
cp[0] = 2*2.0*tan(PI * Lcutoff/ 2.0);
cp[1] = 2*2.0*tan(PI * Ucutoff/2.0);
//Bw = cp[1] - cp[0];
//center frequency
Wn = sqrt(cp[0]*cp[1]);
Wn = 2*atan2(Wn,4);
//double kern;
const std::complex<double> result = std::complex<double>(-1,0);
for(int k = 0; k<2*FilterOrder+1; k++)
{
NormalizedKernel[k] = std::exp(-sqrt(result)*Wn*Numbers[k]);
}
double b=0;
double den=0;
for(int d = 0; d<2*FilterOrder+1; d++)
{
b+=real(NormalizedKernel[d]*NumCoeffs[d]);
den+=real(NormalizedKernel[d]*DenC[d]);
}
for(int c = 0; c<2*FilterOrder+1; c++)
{
NumCoeffs[c]=(NumCoeffs[c]*den)/b;
}
free(TCoeffs);
return NumCoeffs;
}
double *ComputeDenCoeffs(int FilterOrder, double Lcutoff, double Ucutoff)
{
int k; // loop variables
double theta; // PI * (Ucutoff - Lcutoff)/2.0
double cp; // cosine of phi
double st; // sine of theta
double ct; // cosine of theta
double s2t; // sine of 2*theta
double c2t; // cosine 0f 2*theta
double *RCoeffs; // z^-2 coefficients
double *TCoeffs; // z^-1 coefficients
double *DenomCoeffs; // dk coefficients
double PoleAngle; // pole angle
double SinPoleAngle; // sine of pole angle
double CosPoleAngle; // cosine of pole angle
double a; // workspace variables
cp = cos(PI * (Ucutoff + Lcutoff)/2.0);
theta = PI * (Ucutoff - Lcutoff)/2.0;
st = sin(theta);
ct = cos(theta);
s2t = 2.0*st*ct; // sine of 2*theta
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
RCoeffs = (double *)calloc(2 * FilterOrder, sizeof(double));
TCoeffs = (double *)calloc(2 * FilterOrder, sizeof(double));
for(k = 0; k < FilterOrder; ++k)
{
PoleAngle = PI * (double)(2*k+1)/(double)(2*FilterOrder);
SinPoleAngle = sin(PoleAngle);
CosPoleAngle = cos(PoleAngle);
a = 1.0 + s2t*SinPoleAngle;
RCoeffs[2*k] = c2t/a;
RCoeffs[2*k+1] = s2t*CosPoleAngle/a;
TCoeffs[2*k] = -2.0*cp*(ct+st*SinPoleAngle)/a;
TCoeffs[2*k+1] = -2.0*cp*st*CosPoleAngle/a;
}
DenomCoeffs = TrinomialMultiply(FilterOrder, TCoeffs, RCoeffs);
free(TCoeffs);
free(RCoeffs);
DenomCoeffs[1] = DenomCoeffs[0];
DenomCoeffs[0] = 1.0;
for(k = 3; k <= 2*FilterOrder; ++k)
DenomCoeffs[k] = DenomCoeffs[2*k-2];
return DenomCoeffs;
}
void filter(int ord, double *a, double *b, int np, double *x, double *y)
{
int i,j;
y[0]=b[0] * x[0];
for (i=1;i<ord+1;i++)
{
y[i]=0.0;
for (j=0;j<i+1;j++)
y[i]=y[i]+b[j]*x[i-j];
for (j=0;j<i;j++)
y[i]=y[i]-a[j+1]*y[i-j-1];
}
for (i=ord+1;i<np+1;i++)
{
y[i]=0.0;
for (j=0;j<ord+1;j++)
y[i]=y[i]+b[j]*x[i-j];
for (j=0;j<ord;j++)
y[i]=y[i]-a[j+1]*y[i-j-1];
}
}
int main(int argc, char *argv[])
{
(void)argc;
(void)argv;
//Frequency bands is a vector of values - Lower Frequency Band and Higher Frequency Band
//First value is lower cutoff and second value is higher cutoff
//f1 = 0.5Gz f2=10Gz
//fs=127Gz
//Kotelnikov/2=Nyquist (127/2)
double FrequencyBands[2] = {0.5/(127.0/2.0),10.0/(127.0/2.0)};//these values are as a ratio of f/fs, where fs is sampling rate, and f is cutoff frequency
//and therefore should lie in the range [0 1]
//Filter Order
int FiltOrd = 2;//5;
//Pixel Time Series
/*int PixelTimeSeries[N];
int outputSeries[N];
*/
//Create the variables for the numerator and denominator coefficients
double *DenC = 0;
double *NumC = 0;
//Pass Numerator Coefficients and Denominator Coefficients arrays into function, will return the same
printf("\n");
//is A in matlab function and the numbers are correct
DenC = ComputeDenCoeffs(FiltOrd, FrequencyBands[0], FrequencyBands[1]);
for(int k = 0; k<2*FiltOrd+1; k++)
{
printf("DenC is: %lf\n", DenC[k]);
}
printf("\n");
NumC = ComputeNumCoeffs(FiltOrd,FrequencyBands[0],FrequencyBands[1],DenC);
for(int k = 0; k<2*FiltOrd+1; k++)
{
printf("NumC is: %lf\n", NumC[k]);
}
double y[5];
double x[5]={1,2,3,4,5};
filter(5, DenC, NumC, 5, x, y);
return 1;
}