我正在尝试在Android中开发一个样本面部检测应用程序。我尝试使用Android SDK本身提供的FaceDetecor
类,但它没有提供正确的结果。我有一个位图。图书馆应该分析并且应该说明位图是否可用。请给我一些建议。希望获得更好的结果。我为此图片尝试了以下Reference Image图片,但没有面孔。
主要课程:
import android.app.Activity;
import android.os.Bundle;
import android.widget.ImageView;
public class DetectFace1Activity extends Activity {
/** Called when the activity is first created. */
ImageView image;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
image=(ImageView)findViewById(R.id.image);
FaceView faceView = new FaceView(this);
setContentView(faceView);
}
}
人脸检测类:
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.PointF;
import android.graphics.Rect;
import android.media.FaceDetector;
import android.util.Log;
import android.view.View;
public class FaceView extends View {
private static final int NUM_FACES = 10; // max is 64
private static final boolean DEBUG = true;
private FaceDetector arrayFaces;
private FaceDetector.Face getAllFaces[] = new FaceDetector.Face[NUM_FACES];
private FaceDetector.Face getFace = null;
private PointF eyesMidPts[] = new PointF[NUM_FACES];
private float eyesDistance[] = new float[NUM_FACES];
private Bitmap sourceImage;
private Paint tmpPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
private Paint pOuterBullsEye = new Paint(Paint.ANTI_ALIAS_FLAG);
private Paint pInnerBullsEye = new Paint(Paint.ANTI_ALIAS_FLAG);
private int picWidth, picHeight;
private float xRatio, yRatio;
public FaceView(Context context) {
super(context);
pInnerBullsEye.setStyle(Paint.Style.FILL);
pInnerBullsEye.setColor(Color.RED);
pOuterBullsEye.setStyle(Paint.Style.STROKE);
pOuterBullsEye.setColor(Color.RED);
tmpPaint.setStyle(Paint.Style.STROKE);
tmpPaint.setTextAlign(Paint.Align.CENTER);
BitmapFactory.Options bfo = new BitmapFactory.Options();
bfo.inPreferredConfig = Bitmap.Config.RGB_565;
sourceImage = BitmapFactory.decodeResource( getResources() ,R.drawable.black, bfo);
picWidth = sourceImage.getWidth();
picHeight = sourceImage.getHeight();
arrayFaces = new FaceDetector( picWidth, picHeight, NUM_FACES );
arrayFaces.findFaces(sourceImage, getAllFaces);
for (int i = 0; i < getAllFaces.length; i++)
{
getFace = getAllFaces[i];
try {
PointF eyesMP = new PointF();
getFace.getMidPoint(eyesMP);
eyesDistance[i] = getFace.eyesDistance();
eyesMidPts[i] = eyesMP;
if (DEBUG)
{
Log.i("Face", i + " " + getFace.confidence() + " " + getFace.eyesDistance() + " " + "Pose: ("+ getFace.pose(FaceDetector.Face.EULER_X) + ","
+ getFace.pose(FaceDetector.Face.EULER_Y) + "," + getFace.pose(FaceDetector.Face.EULER_Z) + ")" + "Eyes Midpoint: ("+eyesMidPts[i].x + "," + eyesMidPts[i].y +")");
}
} catch (Exception e) {
if (DEBUG) Log.e("Face", i + " is null");
}
}
}
@Override
protected void onDraw(Canvas canvas)
{
xRatio = getWidth()*1.0f / picWidth;
yRatio = getHeight()*1.0f / picHeight;
canvas.drawBitmap( sourceImage, null , new Rect(0,0,getWidth(),getHeight()),tmpPaint);
for (int i = 0; i < eyesMidPts.length; i++)
{
if (eyesMidPts[i] != null)
{
pOuterBullsEye.setStrokeWidth(eyesDistance[i] /6);
canvas.drawCircle(eyesMidPts[i].x*xRatio, eyesMidPts[i].y*yRatio, eyesDistance[i] / 2 , pOuterBullsEye);
canvas.drawCircle(eyesMidPts[i].x*xRatio, eyesMidPts[i].y*yRatio, eyesDistance[i] / 6 , pInnerBullsEye);
}
}
}
答案 0 :(得分:3)
getFace.confidence()
就是您所需要的。
中的参考资料公众浮动信心()
自:API级别1 返回介于0和1之间的置信因子。这表示确定的内容实际上是一个面。置信度高于0.3通常就足够了。
答案 1 :(得分:0)
FaceDetector实际上效果不好。我有一个需要使用它的应用程序,我花了一两天时间,它只是不能一致或准确地识别面部。不值得使用,不要浪费你的时间。它根本无法达到任何人都期望的标准。我尝试了几十张照片,也许有一半它应该识别的面孔能够被识别出来。