我想了解二进制哈希是什么。我的理解是,你将你的信息分成四个部分,D1-D4,然后你可以单独获得每个部分,并获得H1-H4。然后哈希H1 + H2和H3 + H4以创建H5和H6。然后,哈希H5和H6以生成最终的哈希值H.这是正确的吗?如果没有,请告诉我哪里出错了,谢谢!
答案 0 :(得分:3)
请查看此页面,其中介绍了CRC32 - good old Wikipedia
这可能是最简单的散列算法(当然不是最好的!),但它应该让你大致了解散列的工作原理。
所有其他哈希算法基本上都做同样的事情,但算法要么更难反转(sha256等),要么提供更均匀的结果分布和更少的碰撞可能性(perlhash等)。
哪个最好取决于你想要哈希的内容:
这是一篇很好的文章,描述了perl编程语言bob burtle's hash
使用的哈希函数答案 1 :(得分:2)
有许多二进制哈希算法“md5”,“sha256”,“sha512”,“haval160”等。
以下是MD5算法的说明。可以在http://en.wikipedia.org/wiki/MD5找到此伪代码及其完整的c实现。在这个过程中,似乎A,B,C和D用于创建F和g。在此过程之前,输入被分解为512位块的块。然后,再进16个32位字。
根据此算法计算MD5哈希值。所有值都是小端的。
//Note: All variables are unsigned 32 bit and wrap modulo 2^32 when calculating
var int[64] s, K
//s specifies the per-round shift amounts
s[ 0..15] := { 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22}
s[16..31] := { 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20}
s[32..47] := { 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23}
s[48..63] := { 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21}
//Use binary integer part of the sines of integers (Radians) as constants:
for i from 0 to 63
K[i] := floor(abs(sin(i + 1)) × (2 pow 32))
end for
//(Or just use the following table):
K[ 0.. 3] := { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee }
K[ 4.. 7] := { 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 }
K[ 8..11] := { 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be }
K[12..15] := { 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 }
K[16..19] := { 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa }
K[20..23] := { 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 }
K[24..27] := { 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed }
K[28..31] := { 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a }
K[32..35] := { 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c }
K[36..39] := { 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 }
K[40..43] := { 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 }
K[44..47] := { 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 }
K[48..51] := { 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 }
K[52..55] := { 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 }
K[56..59] := { 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 }
K[60..63] := { 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }
//Initialize variables:
var int a0 := 0x67452301 //A
var int b0 := 0xefcdab89 //B
var int c0 := 0x98badcfe //C
var int d0 := 0x10325476 //D
//Pre-processing: adding a single 1 bit
append "1" bit to message
/* Notice: the input bytes are considered as bits strings,
where the first bit is the most significant bit of the byte.[41]
//Pre-processing: padding with zeros
append "0" bit until message length in bit ≡ 448 (mod 512)
append length mod (2 pow 64) to message
//Process the message in successive 512-bit chunks:
for each 512-bit chunk of message
break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15
//Initialize hash value for this chunk:
var int A := a0
var int B := b0
var int C := c0
var int D := d0
//Main loop:
for i from 0 to 63
if 0 ≤ i ≤ 15 then
F := (B and C) or ((not B) and D)
g := i
else if 16 ≤ i ≤ 31
F := (D and B) or ((not D) and C)
g := (5×i + 1) mod 16
else if 32 ≤ i ≤ 47
F := B xor C xor D
g := (3×i + 5) mod 16
else if 48 ≤ i ≤ 63
F := C xor (B or (not D))
g := (7×i) mod 16
dTemp := D
D := C
C := B
B := B + leftrotate((A + F + K[i] + M[g]), s[i])
A := dTemp
end for
//Add this chunk's hash to result so far:
a0 := a0 + A
b0 := b0 + B
c0 := c0 + C
d0 := d0 + D
end for
var char digest[16] := a0 append b0 append c0 append d0 //(Output is in little-endian)
//leftrotate function definition
leftrotate (x, c)
return (x << c) binary or (x >> (32-c));
答案 2 :(得分:1)
你是对的。维基百科的图片几乎描述了它:https://en.wikipedia.org/wiki/Merkle_tree
这取决于您如何拆分原始邮件的实施方式。显然,如果你的消息相对较小,将它分成数百万个块是没用的,同样,如果你的消息非常大,那么将它分成每个字节块是很尴尬的。
不要忘记您确实需要将分裂信息传达给所有使用它的人。否则哈希值不匹配