我试图在java中使用min-heap实现Dijkstra's Algorithm
,但每次都输出错误的输出。 Here我在C ++中使用相同的主题。下面是我的图表。节点A是绿色,是源,节点F是红色,是目的地。我的目标是找出从A到F的最短路径长度。
以下是我的代码
public class Dijkstra {
private static Heap heap = new Heap();
private static int[][] graph;
public Dijkstra() {
graph = new int[6][6];
/*
* The graph value assignment is just for checking the code. node A is
* referred as node 0, node B is referred as node 1 and so on. finally
* node F is referred as node 5.
*/
graph[0][0] = graph[0][1] = graph[0][3] = graph[0][4] = graph[0][5] = graph[1][0] = graph[1][1] = graph[1][4] = graph[1][5] = graph[2][2] = graph[2][5] = graph[3][0] = graph[3][3] = graph[4][0] = graph[4][1] = graph[4][4] = graph[5][0] = graph[5][1] = graph[5][2] = graph[5][5] = 0;
graph[1][2] = graph[2][1] = graph[2][3] = graph[3][2] = graph[3][4] = graph[4][3] = graph[4][5] = graph[5][4] = 1;
graph[1][3] = graph[3][1] = 3;
graph[0][2] = graph[2][0] = 4;
graph[2][4] = graph[4][2] = 5;
graph[3][5] = graph[5][3] = 8;
}
public static void main(String[] args) {
Dijkstra dij = new Dijkstra();
// Source is node A (node 0) and destination is node F (node 5)
System.out.println(dij.solve(6, 0, 5));
}
public int solve(int numOfNodes, int source, int dest) {
heap.push(source, 0);
while (!heap.isEmpty()) {
int u = heap.pop();
if (u == dest)
return heap.cost[dest];
for (int i = 0; i < numOfNodes; i++) {
if (graph[u][i] >= 0)
heap.push(i, heap.cost[u] + graph[u][i]);
}
}
return -1;
}
}
class Heap {
private int[] data;
private int[] index;
public int[] cost;
private int size;
public Heap() {
data = new int[6];
index = new int[6];
cost = new int[6];
for (int i = 0; i < 6; i++) {
index[i] = -1;
cost[i] = -1;
}
size = 0;
}
public boolean isEmpty() {
return (size == 0);
}
private void shiftUp(int i) {
int j;
while (i > 0) {
j = (i - 1) / 2;
if (cost[data[i]] < cost[data[j]]) {
// swap here
int temp = index[data[i]];
index[data[i]] = index[data[j]];
index[data[j]] = temp;
// swap here
temp = data[i];
data[i] = data[j];
data[j] = temp;
i = j;
} else
break;
}
}
private void shiftDown(int i) {
int j, k;
while (2 * i + 1 < size) {
j = 2 * i + 1;
k = j + 1;
if (k < size && cost[data[k]] < cost[data[j]]
&& cost[data[k]] < cost[data[i]]) {
// swap here
int temp = index[data[k]];
index[data[k]] = index[data[i]];
index[data[i]] = temp;
// swap here
temp = data[k];
data[k] = data[i];
data[i] = temp;
i = k;
} else if (cost[data[j]] < cost[data[i]]) {
// swap here
int temp = index[data[j]];
index[data[j]] = index[data[i]];
index[data[i]] = temp;
// swap here
temp = data[j];
data[j] = data[i];
data[i] = temp;
i = j;
} else
break;
}
}
public int pop() {
int res = data[0];
data[0] = data[size - 1];
index[data[0]] = 0;
size--;
shiftDown(0);
return res;
}
public void push(int x, int c) {
if (index[x] == -1) {
cost[x] = c;
data[size] = x;
index[x] = size;
size++;
shiftUp(index[x]);
} else {
if (c < cost[x]) {
cost[x] = c;
shiftUp(index[x]);
shiftDown(index[x]);
}
}
}
}
在运行整个代码时,我得到0作为输出但是可以清楚地告诉从节点A到节点F的成本是7(4 + 1 + 1 + 1 = A-C-D-E-F)。错误在哪里?
答案 0 :(得分:4)
使用graph[u][i] >= 0
测试现有边缘。但是您的图表被定义为零值没有边缘。所以你应该把它改成
if (graph[u][i] > 0) ...
内部方法solve
。另一种可能性是在矩阵中标记值为-1
的不存在的边。这样就可以实现零成本边缘。
答案 1 :(得分:0)
在堆中,您有两个值: 标识节点的索引, 和识别节点距离的成本。 您可以弹出成本,即距离,但您可以像索引一样使用它来标识节点。
int u = heap.pop();
if (u == dest)
...
并在solve()中:
Total intersection tests: 100,000,000
Hits: 4,930,610 ( 4.93%)
Misses: 95,069,390 (95.07%)
Total time: 1.51 seconds
Millions of tests per second: 66.18