使用min-heap实现Dijkstra算法但失败了

时间:2012-04-09 16:43:31

标签: java algorithm graph shortest-path dijkstra

我试图在java中使用min-heap实现Dijkstra's Algorithm,但每次都输出错误的输出。 Here我在C ++中使用相同的主题。下面是我的图表。节点A是绿色,是源,节点F是红色,是目的地。我的目标是找出从A到F的最短路径长度。

This is my graph

以下是我的代码

public class Dijkstra {
    private static Heap heap = new Heap();
    private static int[][] graph;

    public Dijkstra() {
        graph = new int[6][6];
        /*
         * The graph value assignment is just for checking the code. node A is
         * referred as node 0, node B is referred as node 1 and so on. finally
         * node F is referred as node 5.
         */
        graph[0][0] = graph[0][1] = graph[0][3] = graph[0][4] = graph[0][5] = graph[1][0] = graph[1][1] = graph[1][4] = graph[1][5] = graph[2][2] = graph[2][5] = graph[3][0] = graph[3][3] = graph[4][0] = graph[4][1] = graph[4][4] = graph[5][0] = graph[5][1] = graph[5][2] = graph[5][5] = 0;
        graph[1][2] = graph[2][1] = graph[2][3] = graph[3][2] = graph[3][4] = graph[4][3] = graph[4][5] = graph[5][4] = 1;
        graph[1][3] = graph[3][1] = 3;
        graph[0][2] = graph[2][0] = 4;
        graph[2][4] = graph[4][2] = 5;
        graph[3][5] = graph[5][3] = 8;
    }

    public static void main(String[] args) {
        Dijkstra dij = new Dijkstra();
        // Source is node A (node 0) and destination is node F (node 5)
        System.out.println(dij.solve(6, 0, 5));
    }

    public int solve(int numOfNodes, int source, int dest) {
        heap.push(source, 0);
        while (!heap.isEmpty()) {
            int u = heap.pop();
            if (u == dest)
                return heap.cost[dest];
            for (int i = 0; i < numOfNodes; i++) {
                if (graph[u][i] >= 0)
                    heap.push(i, heap.cost[u] + graph[u][i]);
            }
        }
        return -1;
    }
}

class Heap {
    private int[] data;
    private int[] index;
    public int[] cost;
    private int size;

    public Heap() {
        data = new int[6];
        index = new int[6];
        cost = new int[6];

        for (int i = 0; i < 6; i++) {
            index[i] = -1;
            cost[i] = -1;
        }

        size = 0;
    }

    public boolean isEmpty() {
        return (size == 0);
    }

    private void shiftUp(int i) {
        int j;
        while (i > 0) {
            j = (i - 1) / 2;
            if (cost[data[i]] < cost[data[j]]) {
                // swap here
                int temp = index[data[i]];
                index[data[i]] = index[data[j]];
                index[data[j]] = temp;
                // swap here
                temp = data[i];
                data[i] = data[j];
                data[j] = temp;
                i = j;
            } else
                break;
        }
    }

    private void shiftDown(int i) {
        int j, k;
        while (2 * i + 1 < size) {
            j = 2 * i + 1;
            k = j + 1;
            if (k < size && cost[data[k]] < cost[data[j]]
                    && cost[data[k]] < cost[data[i]]) {
                // swap here
                int temp = index[data[k]];
                index[data[k]] = index[data[i]];
                index[data[i]] = temp;
                // swap here
                temp = data[k];
                data[k] = data[i];
                data[i] = temp;

                i = k;
            } else if (cost[data[j]] < cost[data[i]]) {
                // swap here
                int temp = index[data[j]];
                index[data[j]] = index[data[i]];
                index[data[i]] = temp;
                // swap here
                temp = data[j];
                data[j] = data[i];
                data[i] = temp;

                i = j;
            } else
                break;
        }
    }

    public int pop() {
        int res = data[0];
        data[0] = data[size - 1];
        index[data[0]] = 0;
        size--;
        shiftDown(0);
        return res;
    }

    public void push(int x, int c) {
        if (index[x] == -1) {
            cost[x] = c;
            data[size] = x;
            index[x] = size;
            size++;
            shiftUp(index[x]);
        } else {
            if (c < cost[x]) {
                cost[x] = c;
                shiftUp(index[x]);
                shiftDown(index[x]);
            }
        }
    }
}

在运行整个代码时,我得到0作为输出但是可以清楚地告诉从节点A到节点F的成本是7(4 + 1 + 1 + 1 = A-C-D-E-F)。错误在哪里?

2 个答案:

答案 0 :(得分:4)

使用graph[u][i] >= 0测试现有边缘。但是您的图表被定义为零值没有边缘。所以你应该把它改成

if (graph[u][i] > 0) ...

内部方法solve。另一种可能性是在矩阵中标记值为-1的不存在的边。这样就可以实现零成本边缘。

答案 1 :(得分:0)

在堆中,您有两个值: 标识节点的索引, 和识别节点距离的成本。 您可以弹出成本,即距离,但您可以像索引一样使用它来标识节点。

  int u = heap.pop();
  if (u == dest)
  ...

并在solve()中:

Total intersection tests:  100,000,000
  Hits:                      4,930,610 ( 4.93%)
  Misses:                   95,069,390 (95.07%)

Total time:                       1.51 seconds
Millions of tests per second:    66.18