我正在尝试将膨胀的β回归模型拟合成比例数据。我正在使用包gamlss
并指定BEINF族。我想知道如何提取$mu.coefficients
的p值。当我输入命令fit.3$mu.coefficients
时(如我的r代码底部所示),它只给出了Mu系数的估计值。以下是我的数据示例。
mydata = data.frame(y = c(0.014931087, 0.003880983, 0.006048048, 0.014931087,
+ 0.016469269, 0.013111447, 0.012715517, 0.007981377), index = c(1,1,2,2,3,3,4,4))
mydata
y index
1 0.004517611 1
2 0.004351405 1
3 0.007952064 2
4 0.004517611 2
5 0.003434018 3
6 0.003602046 4
7 0.002370690 4
8 0.002993016 4
> library(gamlss)
> fit.3 = gamlss(y ~ factor(index), family = BEINF, data = mydata)
> summary(fit.3)
*******************************************************************
Family: c("BEINF", "Beta Inflated")
Call:
gamlss(formula = y ~ factor(index), family = BEINF, data = mydata)
Fitting method: RS()
-------------------------------------------------------------------
Mu link function: logit
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.3994 0.1204 -44.858 1.477e-06
factor(index)2 0.2995 0.1591 1.883 1.329e-01
factor(index)3 -0.2288 0.1805 -1.267 2.739e-01
factor(index)4 -0.5017 0.1952 -2.570 6.197e-02
-------------------------------------------------------------------
Sigma link function: logit
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.456 0.2514 -17.72 4.492e-07
-------------------------------------------------------------------
Nu link function: log
Nu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.54 10194 -0.002113 0.9984
-------------------------------------------------------------------
Tau link function: log
Tau Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.63 10666 -0.002028 0.9984
-------------------------------------------------------------------
No. of observations in the fit: 8
Degrees of Freedom for the fit: 7
Residual Deg. of Freedom: 1
at cycle: 12
Global Deviance: -93.08548
AIC: -79.08548
SBC: -78.52938
*******************************************************************
fit.3$mu.coefficients
(Intercept) factor(index)2 factor(index)3 factor(index)4
-5.3994238 0.2994738 -0.2287571 -0.5016511
我真的很感谢你的帮助。
答案 0 :(得分:1)
使用summary.gamlss中的保存选项,对于上面的模型,请使用此选项
fit.3 = gamlss(y ~ factor(index), family = BEINF, data = mydata)
sfit.3<-summary(fit.3, save=TRUE)
sfit.3$mu.coef.table
sfit.3$sigma.coef.table
#to get a list of all the slots in the object
str(sfit.3)
答案 1 :(得分:0)
fit.3 = gamlss(y ~ factor(index), family = BEINF, data = mydata.ex)
sfit.3<-summary(fit.3, save=TRUE)
fit.3$mu.coefficients
sfit.3$coef.table # Here use Brackets []
estimate.pval<-data.frame(Intercept=sfit.3$coef.table[1,1],pvalue=sfit.3$coef.table[1,4],
"factor(index)^2"=sfit.3$coef.table[2,1] ,pvalue=sfit.3$coef.table[2,4],
"factor(index)^3"=sfit.3$coef.table[3,1] ,pvalue=sfit.3$coef.table[3,4],
"factor(index)^4"=sfit.3$coef.table[4,1] ,pvalue=sfit.3$coef.table[4,4])