double data[12] = {1, z, z^2, z^3, 1, y, y^2, y^3, 1, x, x^2, x^3};
double result[64] = {1, z, z^2, z^3, y, zy, (z^2)y, (z^3)y, y^2, z(y^2), (z^2)(y^2), (z^3)(y^2), y^3, z(y^3), (z^2)(y^3), (z^3)(y^3), x, zx, (z^2)x, (z^3)x, yx, zyx, (z^2)yx, (z^3)yx, (y^2)x, z(y^2)x, (z^2)(y^2)x, (z^3)(y^2)x, (y^3)x, z(y^3)x, (z^2)(y^3)x, (z^3)(y^3)x, x^2, z(x^2), (z^2)(x^2), (z^3)(x^2), y(x^2), zy(x^2), (z^2)y(x^2), (z^3)y(x^2), (y^2)(x^2), z(y^2)(x^2), (z^2)(y^2)(x^2), (z^3)(y^2)(x^2), (y^3)(x^2), z(y^3)(x^2), (z^2)(y^3)(x^2), (z^3)(y^3)(x^2), x^3, z(x^3), (z^2)(x^3), (z^3)(x^3), y(x^3), zy(x^3), (z^2)y(x^3), (z^3)y(x^3), (y^2)(x^3), z(y^2)(x^3), (z^2)(y^2)(x^3), (z^3)(y^2)(x^3), (y^3)(x^3), z(y^3)(x^3), (z^2)(y^3)(x^3), (z^3)(y^3)(x^3)};
其他例子:
double data[4] = {1, z, z^2, z^3};
double result[4] = {1, z, z^2, z^3};
double data[8] = {1, z, z^2, z^3, 1, y, y^2, y^3};
double result[16] = { ... };
我在运行此基准测试后选择了接受的答案代码:https://gist.github.com/1232406。基本上,前两个代码运行,执行时间最短的代码获胜。
答案 0 :(得分:2)
void Tensor(std::vector<double>& result, double x, double y, double z) {
result.resize(64); //almost noop if already right size
double tz = z*z;
double ty = y*y;
double tx = x*x;
std::array<double, 12> data = {0, 0, tz, tz*z, 1, y, ty, ty*y, 1, x, tx, tx*x};
register std::vector<double>::iterator iter = result.begin();
register int yi;
register double xy;
for(register int xi=0; xi<4; ++xi) {
for(yi=0; yi<4; ++yi) {
xy = data[4+yi]*data[8+xi];
*iter = xy; //a smart compiler can do these four in parallell
*(++iter) = z*xy;
*(++iter) = data[2]*xy;
*(++iter) = data[3]*xy;
++iter; //workaround for speed!
}
}
}
这里可能至少有一个错误,但它应该很快,没有依赖性(在std::vector
/ std::array
之外),只需要x,y,z。我避免了递归,所以它只适用于3输入/ 64输出。然而,该概念可以应用于任何数量的参数。你只需要自己实例化。
答案 1 :(得分:1)
你应该使用动态算法。也就是说,您可以使用以前的结果。例如,你保留y ^ 2结果并在计算(y ^ 2)z时使用它而不是再次计算它。
答案 2 :(得分:1)
一个好的编译器会自动调整这个我想我的编译器都不好:
void tensor(const double *restrict data,
int dimensions,
double *restrict result) {
result[0] = 1.0;
for (int i = 0; i < dimensions; i++) {
for (int j = (1 << (i * 2)) - 1; j > -1; j--) {
double alpha = result[j];
{
double *restrict dst = &result[j * 4];
const double *restrict src = &data[(dimensions - 1 - i) * 4];
for (int k = 0; k < 4; k++) dst[k] = alpha * src[k];
}
}
}
}
答案 3 :(得分:1)
#include <vector>
#include <cstddef>
#include <cmath>
void Tensor(std::vector<double>& result, const std::vector<double>& variables, size_t index)
{
double p1 = variables[index];
double p2 = p1*p1;
double p3 = p1*p2;
if (index == variables.size() - 1) {
result.push_back(1);
result.push_back(p1);
result.push_back(p2);
result.push_back(p3);
} else {
Tensor(result, variables, index+1);
ptrdiff_t size = result.size();
for(int j=0; j<size; ++j)
result.push_back(result[j]*p1);
for(int j=0; j<size; ++j)
result.push_back(result[j]*p2);
for(int j=0; j<size; ++j)
result.push_back(result[j]*p3);
}
}
std::vector<double> Tensor(const std::vector<double>& params) {
std::vector<double> result;
double rsize = (1<<(2*params.size());
result.reserve(rsize);
Tensor(result, params);
return result;
}
int main() {
std::vector<double> params;
params.push_back(3.1415926535);
params.push_back(2.7182818284);
params.push_back(42);
params.push_back(65536);
std::vector<double> result = Tensor(params);
}
我确认这个编译并运行(http://ideone.com/IU1eQ)。它运行速度很快,没有依赖性(在std :: vector之外)。它还需要任意数量的参数。由于调用递归形式很尴尬,我做了一个包装器。它为每个参数调用一个函数,并对动态内存进行一次调用(在包装器中)。
答案 4 :(得分:0)
您应该寻找Pascal's pyramid以获得快速解决方案。 Useful link 1,useful link 2,useful link 3和useful link 4。
还有一件事:我认为它将是有限元求解器的基础。通常写自己的BLAS求解器不是个好主意。不要重新发明轮子!我认为你应该使用像intel MKL或Cuda base BLAS这样的BLAS求解器。