您好我正在准备面试代码测试,我偶然发现了这个问题。我尝试在C#尝试它,下面是我的尴尬答案,我甚至不知道它是否正确,但大多数情况下我猜不是,有人可以请我提供答案,这样当我重新处理解决方案时,我至少可以验证输出的答案。感谢。
示例数据:
int[] arr = {5, 1, -7, 3, 7};
代码:
int[] LargestsubarrayMaxSum(int[] arr)
{
int temp = 0;
int[] resultArr = new int[arr.Length];
for (int i = 0; i < arr.Length - 1; i++)
{
if (i != 0)
{
foreach (int item in resultArr)
{
temp += item;
}
if (temp + arr[i + 1] > 0)
{
resultArr[i + 1] = temp + arr[i + 1];
}
}
else
{
if ((arr[i] + arr[i + 1]) >= 0)
{
resultArr[i] = arr[i];
resultArr[i + 1] = arr[i] + arr[i + 1];
}
else
{
resultArr[i] = arr[i];
resultArr[i + 1] = 0;
}
}
}
return resultArr;
}
答案 0 :(得分:9)
这个怎么样?
var arr = new [] {5, 1, -7, 3, 7};
var xs =
from n in Enumerable.Range(0, arr.Length)
from l in Enumerable.Range(1, arr.Length - n)
let subseq = arr.Skip(n).Take(l)
orderby subseq.Count() descending
orderby subseq.Sum() descending
select subseq;
var maxSumSubseq = xs.First();
编辑:添加orderby subseq.Count() descending
以获得最大长度子序列。
编辑:根据评论添加了解释。
选择所有可能的子序列起始索引:
from n in Enumerable.Range(0, arr.Length)
在给定起始索引的情况下选择所有可能的子序列长度:
from l in Enumerable.Range(1, arr.Length - n)
从数组中提取子序列:
let subseq = arr.Skip(n).Take(l)
按下降长度(即最长的第一个)排序子序列 - 可以按l
而不是subseq.Count()
排序,但后者更具表现力,即使前者效率更高:
orderby subseq.Count() descending
计算每个子序列的总和并对子序列进行排序,因此最高值的总和是第一个:
orderby subseq.Sum() descending
选择子序列:
select subseq;
只选择第一个子序列 - 它是具有最大长度的最高值总和:
xs.First();
希望这有帮助。
答案 1 :(得分:7)
O(N)时间复杂度和O(1)空间复杂度。这是我所知道的最佳解决方案:
#include <stdio.h>
#include <limits.h>
int get_max_sum(int* array, int len, int* start, int* end)
{
int max_sum = INT_MIN, sum = 0, i;
int tmp_start = 0;
for(i = 0; i != len; ++i)
{
sum += array[i];
// if the sum is equal, choose the one with more elements
if(sum > max_sum || (sum == max_sum && (end - start) < (i - tmp_start)))
{
max_sum = sum;
*start = tmp_start;
*end = i;
}
if(sum < 0)
{
sum = 0;
tmp_start = i + 1;
}
}
return max_sum;
}
以下是一些测试用例:
int main(int argc, char **argv)
{
int arr1[] = {5, 1, -7, 3, 7};
int arr2[] = {1};
int arr3[] = {-1, -7, -3, -7};
int arr4[] = {5, 1, -7, 2, 2, 2};
int start, end, sum;
sum = get_max_sum(arr1, 5, &start, &end);
printf("sum: %d, start: %d, end: %d\n", sum, start, end);
sum = get_max_sum(arr2, 1, &start, &end);
printf("sum: %d, start: %d, end: %d\n", sum, start, end);
sum = get_max_sum(arr3, 4, &start, &end);
printf("sum: %d, start: %d, end: %d\n", sum, start, end);
sum = get_max_sum(arr4, 6, &start, &end);
printf("sum: %d, start: %d, end: %d\n", sum, start, end);
return 0;
}
$ ./a.out
sum: 10, start: 3, end: 4
sum: 1, start: 0, end: 0
sum: -1, start: 0, end: 0
sum: 6, start: 3, end: 5
<强> UPDATE1 强>: 添加了代码来打印子数组的索引。
<强> UPDATE2 强>: 如果找到具有相同总和的两个子数组,请选择具有更多元素的子数组。
<强> UPDATE3 强>: 修复导致负数的算法
答案 2 :(得分:4)
您可以使用Enigmativity的答案,但可以添加subseq.Count() descending
的额外订单
或者如果你想要一个疯狂的linq查询......
int[] arr = .......
var result = new[]{0}
.Concat(arr.Select((x,i)=>new {x,i})
.Where(a=>a.x<0).Select(a=>a.i+1))
.Select (i => arr.Skip(i).TakeWhile(a => a>=0))
.OrderByDescending(a=>a.Sum())
.OrderByDescending(a=>a.Count()).First();
但是通常你想把它们做成一个循环..
var result=new List<int>();
var maxResult=new List<int>();
// These next four variables could be calculated on the fly
// but this way prevents reiterating the list each loop.
var count=0;
var sum=0;
var maxCount=0;
var maxSum=0;
foreach (var value in arr) {
if (value >=0) {
result.Add(value);
sum+=value;
count++;
} else {
if (sum>maxSum || (sum==maxSum && count>maxCount)) {
maxSum=sum;
maxCount=count;
maxResult=result;
}
result.Clear();
count=0;
sum=0;
}
}
var returnValue=maxResult.ToArray();
答案 3 :(得分:1)
public static int[] FindMaxArrayEx(int[] srcArray)
{
int[] maxArray = new int[1];
int maxTotal = int.MinValue;
int curIndex = 0;
int tmpTotal = 0;
List<int> tmpArray = new List<int>();
if (srcArray.Length != 1)
{
for (int i = 0; i < srcArray.Length; i++)
{
tmpTotal = 0;
curIndex = i;
tmpArray.Clear();
while (curIndex < srcArray.Length)
{
tmpTotal += srcArray[curIndex];
tmpArray.Add(srcArray[curIndex]);
if (tmpTotal > maxTotal)
{
maxTotal = tmpTotal;
maxArray = tmpArray.ToArray();
}
curIndex++;
}
}
}
else
{
maxTotal = srcArray[0];
maxArray = srcArray;
}
Console.WriteLine("FindMaxArrayEx: {0}",maxTotal);
return maxArray;
}
答案 4 :(得分:1)
这是一个完全可行的解决方案:
using System;
using System.Collections.Generic;
class MaxSumOfSubArray
{
static void Main()
{
//int[] array = { 2, 3, -6, -1, 2, -1, 6, 4, -8, 8 };
//maxSubSum(array);
int digits;
List<int> array = new List<int>();
Console.WriteLine("Please enter array of integer values. To exit, enter eny key different than 0..9");
while (int.TryParse(Console.ReadLine(), out digits))
{
array.Add(digits);
}
maxSubSum(array);
}
public static void maxSubSum(List<int> arr)
{
int maxSum = 0;
int currentSum = 0;
int i = 0;
int j = 0;
int seqStart=0;
int seqEnd=0;
while (j < arr.Count)
{
currentSum = currentSum + arr[j];
if (currentSum > maxSum)
{
maxSum = currentSum;
seqStart = i;
seqEnd = j;
}
else if (currentSum < 0)
{
i = j + 1;
currentSum = 0;
}
j++;
}
Console.Write("The sequence of maximal sum in given array is: {");
for (int seq = seqStart; seq <= seqEnd; seq++)
{
Console.Write(arr[seq] + " ");
}
Console.WriteLine("\b}");
Console.WriteLine("The maximum sum of subarray is: {0}", maxSum);
}
}
答案 5 :(得分:1)
/// <summary>
/// given an non-empty input array of integers, this method returns the largest contiguous sum
/// </summary>
/// <param name="inputArray">the non-empty input array of integeres</param>
/// <returns>int, the largest contiguous sum</returns>
/// <remarks>time complexity O(n)</remarks>
static int GetLargestContiguousSum(int[] inputArray)
{
//find length of the string, if empty throw an exception
if (inputArray.Length == 0)
throw new ArgumentException("the input parameter cannot be an empty array");
int maxSum = 0;
int currentSum = 0;
maxSum = currentSum = inputArray[0];
for (int i = 1; i < inputArray.Length; i++) //skip i=0 as currentSum=inputArray[0].
{
currentSum = Math.Max(currentSum + inputArray[i], inputArray[i]);
maxSum = Math.Max(currentSum, maxSum);
}
return maxSum;
}
答案 6 :(得分:0)
/ * - 这是我在Wiki上发现的计算总和的算法,但要获得实际的子阵列 *我真的不得不思考。花了几个小时后,我能够使用startIndex解决它 * endIndex int变量然后通过添加if子句if(max_ending_here == array [i]) {startIndex = i; } *这是非常艰难的。我希望你们都能根据需要进行重构以进行一些改进。* /
/* Initialize:
max_so_far = 0
max_ending_here = 0
Loop for each element of the array
(a) max_ending_here = max_ending_here + a[i]
(b) if(max_ending_here < 0)
max_ending_here = 0
(c) if(max_so_far < max_ending_here)
max_so_far = max_ending_here
return max_so_far*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsoleApplication3
{
class Program
{
static void Main(string[] args)
{
int[] array = { -2, 1, -3, 4, -1, 2, 1, -5, 4 };
int[] largestSubArray;
largestSubArray = Max_Array(array);
Console.WriteLine();
Console.WriteLine("Subarray is :");
foreach (int numb in largestSubArray)
Console.WriteLine(numb);
Console.ReadKey();
}
//Max_Array function will calculate the largest contigent array
//sum and then find out startIndex and endIndex of sub array
//within for loop.Using this startIndex and endIndex new subarray
//is created with the name of largestSubArray and values are copied
//from original array.
public static int[] Max_Array(int[] array)
{
int[] largestSubArray;
int max_so_far = 0, max_ending_here = 0, startIndex = 0,
endIndex = 0;
for (int i = 0, j = 0; i < array.Length; i++)
{
max_ending_here += array[i];
if (max_ending_here <= 0)
{
max_ending_here = 0;
}
if (max_ending_here == array[i])
{ startIndex = i; }
if (max_so_far < max_ending_here)
{
max_so_far = max_ending_here;
endIndex = i;
}
}
Console.WriteLine("Largest sum is: {0}", max_so_far);
largestSubArray = new int[(endIndex - startIndex) + 1];
Array.Copy(array, startIndex, largestSubArray, 0, (endIndex - startIndex) + 1);
return largestSubArray;
}
}
}
输出
Largest sum is: 6
'Subarray is:
4,
-1,
2,
1'
答案 7 :(得分:0)
一旦你完成它就不那么复杂了。我认为它起初倒退了,这有点原因。
答案 8 :(得分:0)
数组中具有最大总和的SubArray是没有最小元素元素的数组。所以排序吧。并删除最小元素。而已。 这适用于其仅正整数数组。否则,正元素的子阵列只是答案
答案 9 :(得分:0)
以下代码为我工作:
static void Main(string[] args)
{
string str = Console.ReadLine();
int [] arr = Array.ConvertAll(str.Split(' '),int.Parse);
int curSum = 0, maxSum = 0;
curSum = maxSum = arr[0];
for (int i = 1; i < arr.Length; i++)
{
curSum = Math.Max(curSum + arr[i], arr[i]);
maxSum = Math.Max(curSum, maxSum);
}
Console.WriteLine("{0}", maxSum);
Console.ReadKey();
}
输入:-2 1 -3 4 -1 2 1 -5 4
O / P:6