排序多类别图表时遇到一些问题。
一些示例代码。
import pandas as pd
import plotly.graph_objects as go
data = [
[0, "Born", 4, "Rhino"], # commenting this line will also reverse sub category sorting
[0, "Died", -1, "Rhino"],
[1, "Born", 4, "Lion"],
[1, "Died", -1, "Lion"],
[2, "Born", 12, "Rhino"],
[2, "Died", -5, "Lion"],
]
z_data = list(zip(*data))
df = pd.DataFrame({
"tick": z_data[0],
"category": z_data[1],
"value": z_data[2],
"type": z_data[3],
})
df = df.sort_values(by=['tick', 'category', 'value', 'type'])
print(df)
fig = go.Figure()
for t in df.type.unique():
plot_df = df[df.type == t]
fig.add_trace(go.Bar(
x=[plot_df.tick, plot_df.category],
y=abs(plot_df.value),
name=t,
))
fig.update_layout({
'barmode': 'stack',
'xaxis': {
'title_text': "Tick",
'tickangle': -90,
},
'yaxis': {
'title_text': "Value",
},
})
fig.write_html(str("./diagram.html"))
您可以看到刻度2在刻度1之前。这是因为“犀牛”是第一个类型列表,将创建刻度0和2。 但是,现在如何正确地对条进行排序?
PS。 'barmode': 'stack'
是有目的的。即使在本测试示例中未使用它。
答案 0 :(得分:1)
我能够修正刻度线,但不能修正出生/死亡订单。我打算逐行绘制,所以我需要玩showlegend
def new
@invoice = Invoice.new
end
def edit
end
def create
@invoice = Invoice.new(invoice_params)
respond_to do |format|
if @invoice.save
format.html { redirect_to project_financial_payment_milestone_invoices_path, notice: 'Invoice was successfully created.' }
format.json { render :show, status: :created, location: @invoice }
else
format.html { redirect_to project_financial_payment_milestone_invoices_path}
format.json { render json: @invoice.projecterrors, status: :unprocessable_entity }
end
end
end
如果您有更多类型,这里有可以帮助您的答案。选中doc
import pandas as pd
import plotly.graph_objects as go
data = [
[0, "Born", 4, "Rhino"], # commenting this line will also reverse sub category sorting
[0, "Died", -1, "Rhino"],
[1, "Born", 4, "Lion"],
[1, "Died", -1, "Lion"],
[2, "Born", 12, "Rhino"],
[2, "Died", -5, "Lion"],
]
# you don't really need to zip here
df = pd.DataFrame(data, columns=["tick", "category", "value", "type"])
df["value"] = df["value"].abs()
我想在这里显示每种类型的首次出现的图例
color_diz = {"Rhino": "blue", "Lion": "red"}
df["color"] = df["type"].map(color_diz)
grp = df.groupby("type")\
.apply(lambda x: x.index.min())\
.reset_index(name="idx")
df = pd.merge(df, grp, on=["type"], how="left")
df["showlegend"] = df.index == df["idx"]
print(df)
tick category value type color idx showlegend
0 0 Born 4 Rhino blue 0 True
1 0 Died 1 Rhino blue 0 False
2 1 Born 4 Lion red 2 True
3 1 Died 1 Lion red 2 False
4 2 Born 12 Rhino blue 0 False
5 2 Died 5 Lion red 2 False
编辑
如果您有更多fig = go.Figure()
for i, row in df.iterrows():
fig.add_trace(
go.Bar(x=[[row["tick"]], [row["category"]]],
y=[row["value"]],
name=row["type"],
marker_color=row["color"],
showlegend=row["showlegend"],
legendgroup=row["type"] # Fix legend
))
fig.update_layout({
'barmode': 'stack',
'xaxis': {
'title_text': "Tick",
'tickangle': -90,
},
'yaxis': {
'title_text': "Value",
},
})
fig.show()
,则可以使用以下技巧。
首先,我生成不同的类型
type
然后我从doc中选择一个颜色序列并将其放在字典中
import string
import numpy as np
import pandas as pd
import plotly.express as px
df = pd.DataFrame({"type":np.random.choice(list(string.ascii_lowercase), 100)})
然后我将唯一的color_dict = {k:v for k,v in enumerate(px.colors.qualitative.Plotly)}
放在数据框上
type
然后我根据它们的索引为其分配颜色
df_col = pd.DataFrame({"type": df["type"].unique()})
最后,我合并到原始df
df_col["color"] = (df_col.index%len(color_dict)).map(color_dict)