我尝试将线添加到多类别条形图中,但未显示。是错误还是我错过了什么?
Offtopic:我可以格式化xaxis类别(刻度,而不是类别值)吗?因为tickformat自动引用了子类别。
import pandas as pd
import plotly.graph_objects as go
df = pd.DataFrame({
"tick": [0, 0, 1, 1, 1, 2, 2, 2],
"value": [12, -6, 9, -14, -10, 9, -10, 5],
"category": ['Born', 'Died', 'Born', 'Died', 'Died', 'Born', 'Died', 'Born'],
"type": ["Penguin", "Lion", "Penguin", "Lion", "Apes", "Penguin", "Lion", "Apes"]
})
fig = go.Figure()
for t in df.type.unique():
plot_df = df[df.type == t]
fig.add_trace(go.Bar(
x=[plot_df.tick, plot_df.category],
y=abs(plot_df.value),
name=t,
))
total_df = df.groupby(['tick']).sum()
fig.add_trace(
go.Scatter(
x=df.tick.unique(),
y=total_df.value,
name="Born - Died",
mode='lines+markers',
)
)
fig.update_layout({
'barmode': 'stack',
'xaxis': {
'title_text': "Tick",
'dtick': 'M1',
'tickformat': "%m.%Y",
'tickangle': -90,
},
'yaxis': {
'title_text': "Value",
},
})
fig.write_html(str("./out2.html"))
答案 0 :(得分:2)
这是设置中的错误或错误的说明。很明显,您的fig.add_traces(go.Scatter))
可以执行 操作,因为它看起来像这样:
并且没有看起来像这样(注意y轴范围和图例):
问题似乎是多类别x轴。对于您的每条迹线,您都有以下x值:
([0, 1, 2], ['Born', 'Born', 'Born'])
([0, 1, 2], ['Died', 'Died', 'Died'])
([1, 2], ['Died', 'Born'])
[0 1 2]
因此,当您尝试在fig.add_traces(go.Scatter(x=df.tick.unique()))
是df.tick.unique()
的地方array([0, 1, 2], dtype=int64)
时,似乎正确地混淆了在何处确切显示位置。因此,您可以做的就是检索所有这些不同的x值,然后尝试使用以下哪种方法最适合您的需求:
xadj = [[*d['x']] for d in fig.data]
然后:
fig.add_trace(
go.Scatter(
#x=df.tick.unique().tolist(),
#x=total_df.index,
x=xadj[1],
y=total_df.value.tolist(),
name="Born - Died",
mode='lines+markers',
),secondary_y=True
)
这将产生以下情节:
我相信这个数字可以告诉您您想分享的故事。但是,如果我正确理解,您宁愿在[0, 1, 2]
上方显示紫色线条,而不要在类别['Born','Died']上方显示。如果您能够切换x轴类别的显示顺序,则可能正是您所需要的。仔细查看以下完整的代码示例,发现时间我们可以讨论详细信息。
import pandas as pd
import plotly.graph_objects as go
df = pd.DataFrame({
"tick": [0, 0, 1, 1, 1, 2, 2, 2],
"value": [12, -6, 9, -14, -10, 9, -10, 5],
"category": ['Born', 'Died', 'Born', 'Died', 'Died', 'Born', 'Died', 'Born'],
"type": ["Penguin", "Lion", "Penguin", "Lion", "Apes", "Penguin", "Lion", "Apes"]
})
from plotly.subplots import make_subplots
# set figure twith multiple y axes
fig = make_subplots(specs=[[{"secondary_y": True}]])
for t in df.type.unique():
plot_df = df[df.type == t]
fig.add_trace(go.Bar(
x=[plot_df.tick, plot_df.category],
#x=[plot_df.category, plot_df.tick],
y=abs(plot_df.value),
name=t,
))
total_df = df.groupby(['tick']).sum()
# xadj =[]
# for d in fig.data:
# xadj.append([*d['x']])
xadj = [[*d['x']] for d in fig.data]
fig.add_trace(
go.Scatter(
#x=df.tick.unique().tolist(),
#x=total_df.index,
x=xadj[1],
y=total_df.value.tolist(),
name="Born - Died",
mode='lines+markers',
),secondary_y=True
)
fig.update_layout({
'barmode': 'stack',
'xaxis': {
'title_text': "Tick",
'dtick': 'M1',
'tickformat': "%m.%Y",
'tickangle': -90,
},
'yaxis': {
'title_text': "Value",
},
})
#fig.write_html(str("./out2.html"))
fig.show()