我已使用XGBRegressor模型进行预测 我使用的代码
import xgboost
from sklearn.metrics import mean_squared_error
xgb = xgboost.XGBRegressor(reg = 'linear',
n_estimators=1200,
num_rounds = 1500,
learning_rate=0.3 ,#0.1
seed = 45,
gamma=0, #0
subsample = 0.7,
colsample_bytree = 1, #0.1
max_depth= 6,
min_child_weight = 1,
nthread = 4,
silent = 1)
xgb.fit(xtrain,ytrain,eval_set=[(xtrain,ytrain), (xtest, ytest)],
early_stopping_rounds = 50,
verbose = False)
y_train_pred = xgb.predict(xtrain)
predictions = xgb.predict(xtest)
结果: R ^ 2火车:0.94,测试:0.86 MSE火车:11587.83,测试:37550.05 RMSE火车:107.65,测试:193.78 MAE火车:45.10,测试:58.72
我需要减少RMSE,MAE和MSE。为了降低错误率,我需要调整哪个参数。 我尝试通过给参数指定各种值来实现,但错误率并未降低。我需要添加或删除一些参数吗?