我为通用句子编码器提供了以下代码,一旦将模型加载到烧瓶api 中并尝试点击它,它就会产生以下错误(检查如下):
'''
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
module_url = "https://tfhub.dev/google/universal-sentence-encoder-large/5"
model_2 = hub.load(module_url)
print ("module %s loaded" % module_url)
def embed(input):
return model_2(input)
def universalModel(messages):
accuracy = []
similarity_input_placeholder = tf.placeholder(tf.string, shape=(None))
similarity_message_encodings = embed(similarity_input_placeholder)
with tf.Session() as session:
session.run(tf.global_variables_initializer())
session.run(tf.tables_initializer())
message_embeddings_ = session.run(similarity_message_encodings, feed_dict={similarity_input_placeholder: messages})
corr = np.inner(message_embeddings_, message_embeddings_)
accuracy.append(corr[0,1])
# print(corr[0,1])
return "%.2f" % accuracy[0]
'''
在烧瓶API中使用模型时出现的以下错误: tensorflow.python.framework.errors_impl.InvalidArgumentError:图形无效,包含一个带有1个节点的循环,包括:StatefulPartitionedCall 尽管此代码可以正常运行,但在colab笔记本中。
我正在使用Tensorflow版本2.2.0。
答案 0 :(得分:1)
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
这两行旨在使tensorflow 2.x变为tensorflow1.x。
对于Tensorflow 1.x,这是在与flask,django等一起使用时的常见问题。 您必须定义一个图和会话进行推断,
将tensorflow导入为tf 导入tensorflow_hub作为中心
# Create graph and finalize (finalizing optional but recommended).
g = tf.Graph()
with g.as_default():
# We will be feeding 1D tensors of text into the graph.
text_input = tf.placeholder(dtype=tf.string, shape=[None])
embed = hub.Module("https://tfhub.dev/google/universal-sentence-encoder/2")
embedded_text = embed(text_input)
init_op = tf.group([tf.global_variables_initializer(), tf.tables_initializer()])
g.finalize()
# Create session and initialize.
session = tf.Session(graph=g)
session.run(init_op)
输入请求可以通过
处理result = session.run(embedded_text, feed_dict={text_input: ["Hello world"]})
有关详细信息 https://www.tensorflow.org/hub/common_issues
对于tensorflow 2.x会话和图形不是必需的。
import tensorflow as tf
module_url = "https://tfhub.dev/google/universal-sentence-encoder-large/5"
model_2 = hub.load(module_url)
print ("module %s loaded" % module_url)
def embed(input):
return model_2(input)
#pass messages as list
def universalModel(messages):
accuracy = []
message_embeddings_= embed(messages)
corr = np.inner(message_embeddings_, message_embeddings_)
accuracy.append(corr[0,1])
# print(corr[0,1])
return "%.2f" % accuracy[0]