我有一个超过1500行的数据。每行都有一个句子。我正在尝试找出在所有句子中找到最相似句子的最佳方法。我已经尝试过此example,但处理速度如此之慢,以至于大约需要20分钟才能处理1500行数据。
我使用了上一个问题中的代码,并尝试了多种类型来提高速度,但是影响不大。我遇到了使用tensorflow的通用句子编码器,它看起来很快并且具有很好的准确性。我正在与colab合作,您可以检查它here
import tensorflow as tf
import tensorflow_hub as hub
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import re
import seaborn as sns
module_url = "https://tfhub.dev/google/universal-sentence-encoder/4" #@param ["https://tfhub.dev/google/universal-sentence-encoder/4", "https://tfhub.dev/google/universal-sentence-encoder-large/5", "https://tfhub.dev/google/universal-sentence-encoder-lite/2"]
model = hub.load(module_url)
print ("module %s loaded" % module_url)
def embed(input):
return model(input)
df = pd.DataFrame(columns=["ID","DESCRIPTION"], data=np.matrix([[10,"Cancel ASN WMS Cancel ASN"],
[11,"MAXPREDO Validation is corect"],
[12,"Move to QC"],
[13,"Cancel ASN WMS Cancel ASN"],
[14,"MAXPREDO Validation is right"],
[15,"Verify files are sent every hours for this interface from Optima"],
[16,"MAXPREDO Validation are correct"],
[17,"Move to QC"],
[18,"Verify files are not sent"]
]))
message_embeddings = embed(messages)
for i, message_embedding in enumerate(np.array(message_embeddings).tolist()):
print("Message: {}".format(messages[i]))
print("Embedding size: {}".format(len(message_embedding)))
message_embedding_snippet = ", ".join(
(str(x) for x in message_embedding[:3]))
print("Embedding: [{}, ...]\n".format(message_embedding_snippet))
我在寻找什么
我希望我可以通过阈值示例的方式在所有相似且高于0.90%的行中传递0.90数据作为结果。
Data Sample
ID | DESCRIPTION
-----------------------------
10 | Cancel ASN WMS Cancel ASN
11 | MAXPREDO Validation is corect
12 | Move to QC
13 | Cancel ASN WMS Cancel ASN
14 | MAXPREDO Validation is right
15 | Verify files are sent every hours for this interface from Optima
16 | MAXPREDO Validation are correct
17 | Move to QC
18 | Verify files are not sent
预期结果
Above data which are similar upto 0.90% should get as a result with ID
ID | DESCRIPTION
-----------------------------
10 | Cancel ASN WMS Cancel ASN
13 | Cancel ASN WMS Cancel ASN
11 | MAXPREDO Validation is corect # even spelling is not correct
14 | MAXPREDO Validation is right
16 | MAXPREDO Validation are correct
12 | Move to QC
17 | Move to QC
答案 0 :(得分:3)
有多种方法可以找到两个嵌入矢量之间的相似性。
最常见的是cosine_similarity
。
因此,您要做的第一件事是计算相似度矩阵:
代码:
message_embeddings = embed(list(df['DESCRIPTION']))
cos_sim = sklearn.metrics.pairwise.cosine_similarity(message_embeddings)
您将获得一个具有相似值的9*9
矩阵。
您可以创建此矩阵的热图以使其可视化。
代码:
def plot_similarity(labels, corr_matrix):
sns.set(font_scale=1.2)
g = sns.heatmap(
corr_matrix,
xticklabels=labels,
yticklabels=labels,
vmin=0,
vmax=1,
cmap="YlOrRd")
g.set_xticklabels(labels, rotation=90)
g.set_title("Semantic Textual Similarity")
plot_similarity(list(df['DESCRIPTION']), cos_sim)
输出:
深色方框意味着更多相似性。
最后,您遍历此cos_sim矩阵以使用阈值获得所有相似的句子:
threshold = 0.8
row_index = []
for i in range(cos_sim.shape[0]):
if i in row_index:
continue
similar = [index for index in range(cos_sim.shape[1]) if (cos_sim[i][index] > threshold)]
if len(similar) > 1:
row_index += similar
sim_df = pd.DataFrame()
sim_df['ID'] = [df['ID'][i] for i in row_index]
sim_df['DESCRIPTION'] = [df['DESCRIPTION'][i] for i in row_index]
sim_df
数据框看起来像这样。
输出:
可以使用多种方法生成相似度矩阵。 您可以查看this了解更多方法。