我对以下优化问题有疑问。特别是,我想为MLE问题添加以下约束:(x - location)/scale > 0
。如果没有此约束,则LL为Inf
,而L-BGFS-B
优化产生以下错误
library(PearsonDS)
x <- rpearsonIII(n=1000, shape = 5, location = 6, scale = 7)
dpearson3 <- function (x, shape, location, scale, log = FALSE)
{
gscale <- abs(scale)
ssgn <- sign(scale)
density <- dgamma(ssgn * (x - location), shape = shape, scale = gscale, log = log)
return(density)
}
LL3 <- function(theta, x, display)
{
shape <- as.numeric(theta[1])
location <- as.numeric(theta[2])
scale <- as.numeric(theta[3])
tmp <- -sum(log(dpearson3(x, shape, location, scale, log = FALSE)))
if (is.na(tmp)) +Inf else tmp
if(display == 1){print(c(tmp, theta))}
return(sum(tmp))
}
control.list <- list(maxit = 100000, factr=1e-12, fnscale = 1)
fit <- optim(par = param,
fn = LL3,
hessian = TRUE,
method = "L-BFGS-B",
lower = c(0,-Inf,-Inf),
upper = c(Inf,Inf,Inf),
control = control.list,
x = x, display = 1)
假设我从搜索开始
param <- c(100,1000,10)
,出现以下错误
Error in optim(par = param, fn = LL3, hessian = TRUE, method = "L-BFGS-B", :
L-BFGS-B needs finite values of 'fn'
如何解决该问题?
答案 0 :(得分:0)
将MLE功能更改为
LL3 <- function(theta, x, display){
shape <- as.numeric(theta[1])
location <- as.numeric(theta[2])
scale <- as.numeric(theta[3])
tmp <- -sum(log(dpearson3(x, shape, location, scale, log = FALSE)))
if(min((x-location)/scale) < 0) tmp = + 100000000000 # I added this line
if (is.na(tmp)) +Inf else tmp
if(display == 1){print(c(tmp, theta))}
return(tmp)
}
是我能找到的最聪明的东西。这样可以避免Inf
问题。有更好的答案吗?