读取熊猫中的非结构化数据

时间:2020-04-24 21:32:57

标签: python pandas dataframe jupyter-notebook data-science

我在文本文件中有以下非结构化数据,即Discord的消息日志数据。

[06-Nov-19 03:36 PM] Dyno#0000

{Embed}
Server
**Message deleted in #reddit-feed**
Author: ? | Message ID: 171111183099756545

[12-Nov-19 01:35 PM] Dyno#0000

{Embed}
Member Left
@Unknown User
ID: 171111183099756545

[16-Nov-19 11:25 PM] Dyno#0000

{Embed}
Member Joined
@User
ID: 171111183099756545

本质上,我的目标是解析数据并提取所有联接和离开消息,然后绘制服务器中成员的增长情况。有些消息是无关紧要的,每个消息块的行长也各不相同。

Date        Member-change
4/24/2020   2
4/25/2020   -1
4/26/2020   3

我已经尝试过在一个循环中解析数据,但是由于数据是非结构化的并且具有不同的行长,所以我对如何设置它感到困惑。是否有一种方法可以忽略所有没有“已加入成员”和“剩余成员”的块?

1 个答案:

答案 0 :(得分:1)

它是结构化的文本,只是不符合您的期望。 即使文本通常以一致的格式编写,也可以使文件结构化,尽管通常我们认为结构化文本是基于字段的。

这些字段由基于日期的标题分隔,后跟{embed}关键字,然后是您感兴趣的命令。

#! /usr/bin/env python
# -*- coding: utf-8 -*-

import re
from itertools import count

# Get rid of the newlines for convenience
message = message_log.replace("\n", " ")

# Use a regular expression to split the log file into records
rx = r"(\[\d{2}-\w{3}-\d{2})"
replaced = re.split(rx, message)

# re.split will leave a blank entry as the first entry
replaced.pop(0)

# Each record will be a separate entry in a list 
# Unfortunately the date component gets put in a different section of the list
# from the record is refers to and needs to be merged back together
merge_list = list()

for x, y in zip(count(step=2), replaced):
    try:
        merge_list.append(replaced[x] + replaced[x+1])
    except:
        continue

# Now a nice clean record list exists, it is possible to get the user count
n = 0
for z in merge_list:
    # Split the record into date and context
    log_date = re.split("(\d{2}-\w{3}-\d{2})", z)
    # Work out whether the count should be incremented or decremented
    if "{Embed} Member Joined" in z:
        n = n + 1
    elif "{Embed} Member Left" in z:
        n = n - 1
    else:
        continue
    # log_date[1] is needed to get the date from the record
    print(log_date[1] + " " + str(n))