我正在尝试从我从json文件读取的词典集合中创建熊猫数据框。字典如下-
d1 = {"DisplayName": "Test_drive", "permissions": {"read": True, "read_acp": True, "write": True, "write_acp": True}}
d2= {"DisplayName": "Log delivery","URI": "http://test_drive.com/Logs", "permissions": {"read": False, "read_acp": True, "write": True, "write_acp": False}}
我正在尝试将它们放入熊猫数据框。当我尝试在如下所示的数据框中读取它们时-
df = pd.DataFrame(d) **or** df = pd.DataFrame.from_dict(d)
它生成此-
DisplayName permissions
read Test_drive True
read_acp Test_drive True
write Test_drive True
write_acp Test_drive True
或阅读以下内容-
df1 = pd.DataFrame(d).Transpose()
它生成此-
read read_acp write write_acp
DisplayName Test_drive Test_drive Test_drive Test_drive
permissions True True True True
我正在尝试阅读这些词典并将它们加入一个数据框-
**DisplayName** **read** **read_acp** **write** **write_acp** URI
Test_drive True True True True NA
Log delivery False True True False http://test_drive.com/Logs
有什么方法可以做到吗?
答案 0 :(得分:2)
通过添加数据透视图来创建数据框,然后使用数据透视图重塑所需的结构
df = pd.DataFrame.from_dict(d1).append(pd.DataFrame.from_dict(d2))
df.reset_index().pivot(index='DisplayName', columns='index', values='permissions')
包含URI
>>> df.reset_index().pivot(index='DisplayName', columns='index', values=['permissions', 'URI'])
permissions URI
index read read_acp write write_acp read read_acp write write_acp
DisplayName
Log delivery False True True False http://test_drive.com/Logs http://test_drive.com/Logs http://test_drive.com/Logs http://test_drive.com/Logs
Test_drive True True True True NaN NaN NaN NaN
答案 1 :(得分:1)
import pandas as pd
# Input Data
d1 = {"DisplayName": "Test_drive", "permissions": {"read": True, "read_acp": True, "write": True, "write_acp": True}}
d2= {"DisplayName": "Log delivery","URI": "http://test_drive.com/Logs", "permissions": {"read": False, "read_acp": True, "write": True, "write_acp": False}}
# Convert to DataFrame
dicts = [d1, d2]
df_rows = [pd.DataFrame(d) for d in dicts]
df = pd.concat(df_rows, axis=0).reset_index(drop=False)
# Reshape As Desired
tp1 = df.pivot(index='DisplayName', columns='index', values='permissions')
answer = tp1.merge(df[['DisplayName', 'URI']].drop_duplicates(),
how='left',
left_index=True,
right_on='DisplayName').set_index('DisplayName')
输出:
>>> answer
read read_acp write write_acp URI
DisplayName
Log delivery False True True False http://test_drive.com/Logs
Test_drive True True True True NaN
答案 2 :(得分:0)
感谢Vishnudev和Max Power的帮助。我认为以下答案为我提供了我想要获得的确切数据框。
d1 = {"DisplayName": "Test_drive", "permissions": {"read": True, "read_acp": True, "write": True, "write_acp": True}}
d2= {"DisplayName": "Log delivery","URI": "http://test_drive.com/Logs", "permissions": {"read": False, "read_acp": True, "write": True, "write_acp": False}}
df = pd.concat([pd.Series(d1),pd.Series(d2)], axis=1).transpose()
df = pd.concat([df.drop(['permissions'], axis=1),df['permissions'].apply(pd.Series)],axis=1)
**DisplayName URI read read_acp write write_acp**
0 Test_drive NaN True True True True
1 Log delivery http://test_drive.com/Logs False True True False