重塑数据框,按组旋转和扩展列

时间:2020-04-20 20:23:45

标签: python python-3.x pandas

很抱歉,如果这是重复的内容-我似乎找不到合适的关键字来获得想要的匹配。

假设我有一个类似的DataFrame

  name desc   class   group subgroup
0  abc   _d  class1  group1      sg1
1  def   _g  class1  group1      sg1
2  ghi   _j  class1  group1      sg2
3  jkl   _m  class1  group1      sg2
4  mno   _p  class2  group2      sg1
5  pqr   _s  class2  group2      sg1
6  stu   _v  class2  group2      sg2
7  vwx   _y  class2  group2      sg2

最终,我想将框架重塑为如下所示:

   class   group subgroup  name1  desc1 name2 desc2
0 class1  group1      sg1    abc     _d   def    _g
1 class1  group1      sg2    ghi     _j   jkl    _m
2 class2  group2      sg1    mno     _p   pqr    _s
3 class2  group2      sg2    stu     _v   vwx    _y

理想情况下,即使是列表格式(我可以在以后将其拆分的情况下)也是如此:

   class   group subgroup         name      desc
0 class1  group1      sg1   [abc, def]  [_d, _g]
1 class1  group1      sg2   [ghi, jkl]  [_j, _m]
2 class2  group2      sg1   [mno, pqr]  [_p, _s]
3 class2  group2      sg2   [stu, vwx]  [_v, _y]

我尝试使用df.pivot(index=['class','group','subgroup'],columns=['name','desc']),但是显然这不起作用,因为它不会扩展列。它只是给了我一个ValueError

ValueError: Length mismatch: Expected 8 rows, received array of length 3

我可以使用df.groupby(['class', 'group', 'subgroup']).sum(),但它会弄乱name / desc

                          name  desc
class  group  subgroup              
class1 group1 sg1       abcdef  _d_g
              sg2       ghijkl  _j_m
class2 group2 sg1       mnopqr  _p_s
              sg2       stuvwx  _v_y

我可能可以通过几个步骤来完成此操作,但是我想知道是否有一个明显的解决方案使我彻底丢失了吗?

3 个答案:

答案 0 :(得分:2)

这比我预期的要难。基本思想是.apply(list)到分组的列。但是,在groupby之后,我无法一次选择多个列。因此,我使用了列表推导,并将得到的两个系列与pd.concat(axis=1)串联在一起。这也可能是一个班轮,但是我认为如果一行完成它就缺乏可读性

selects = ['desc','name']
list_of_series = [so.groupby(['class', 'group', 'subgroup'])[val].apply(list) for val in selects]
so_new = pd.concat(list_of_series,axis=1)

输出

                            desc        name
class  group  subgroup                      
class1 group1 sg1       [_d, _g]  [abc, def]
              sg2       [_j, _m]  [ghi, jkl]
class2 group2 sg1       [_p, _s]  [mno, pqr]
              sg2       [_v, _y]  [stu, vwx]


不建议使用的班轮

so_new2 = pd.concat([so.groupby(['class', 'group', 'subgroup'])[val].apply(list) for val in ['desc','name']],axis=1)

更新的答案

selects = ['desc', 'name']
df = pd.concat([pd.DataFrame(lst.values.tolist(),columns=[selects[ii]+"1",selects[ii]+"2"],index=lst.index) \
                  for ii,lst in enumerate([so.groupby(['class', 'group', 'subgroup'])[val].apply(list) \
                                           for val in selects])],axis=1)

输出

                       desc1 desc2 name1 name2
class  group  subgroup                        
class1 group1 sg1         _d    _g   abc   def
              sg2         _j    _m   ghi   jkl
class2 group2 sg1         _p    _s   mno   pqr
              sg2         _v    _y   stu   vwx

答案 1 :(得分:2)

这是使用groupby.cumcount在列名中创建最后的1、2 ..的一种方法。然后set_indexunstack。如果您不希望使用多索引列,则将其展平:

df_f = df.assign(cc=df.groupby(['class', 'group', 'subgroup']).cumcount()+1)\
         .set_index(['class', 'group', 'subgroup', 'cc']).unstack()

# if you don't want the multiindex columns
df_f.columns = [f'{col[0]}{col[1]}' for col in df_f.columns]

print (df_f)
                       name1 name2 desc1 desc2
class  group  subgroup                        
class1 group1 sg1        abc   def    _d    _g
              sg2        ghi   jkl    _j    _m
class2 group2 sg1        mno   pqr    _p    _s
              sg2        stu   vwx    _v    _y

答案 2 :(得分:0)

正如我在问题中提到的,我能够通过几个步骤实现这一目标:

df = df.pivot_table(index=['class','group','subgroup'], values=['name','desc'], aggfunc=list)

#                             desc        name
# class  group  subgroup                      
# class1 group1 sg1       [_d, _g]  [abc, def]
#               sg2       [_j, _m]  [ghi, jkl]
# class2 group2 sg1       [_p, _s]  [mno, pqr]
#               sg2       [_v, _y]  [stu, vwx]

df = df.reset_index()

# Create new columns and join it back
df = df.join(pd.DataFrame(df.desc.to_list(), columns=['desc0','desc1']))
df = df.join(pd.DataFrame(df.name.to_list(), columns=['name0','name1']))

# Remove the superfluous listed columns
df.drop(['desc','name'], axis=1, inplace=True)

结果:

    class   group subgroup desc0 desc1 name0 name1
0  class1  group1      sg1    _d    _g   abc   def
1  class1  group1      sg2    _j    _m   ghi   jkl
2  class2  group2      sg1    _p    _s   mno   pqr
3  class2  group2      sg2    _v    _y   stu   vwx

理想情况下,我还是希望减少步骤,并想知道是否存在更好的方法。