如何在sklearn中进行交叉验证中的特征选择(rfecv)

时间:2020-03-30 14:41:47

标签: python machine-learning scikit-learn classification cross-validation

我想在sklearn中执行10倍交叉验证(即recursive feature elimination with cross validation (rfecv)cross_val_predict)中的cross_validate

由于rfecv本身的名称中包含交叉验证部分,因此我不清楚如何执行此操作。我当前的代码如下。

from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(random_state = 0, class_weight="balanced")

k_fold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

rfecv = RFECV(estimator=clf, step=1, cv=k_fold)

请让我知道如何将数据Xyrfecv中的10-fold cross validation一起使用。

如果需要,我很乐意提供更多详细信息。

2 个答案:

答案 0 :(得分:1)

要使用RFE then 进行特征选择,请配合rf进行10倍交叉验证,这是您可以执行的操作:

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.feature_selection import RFE

rf = RandomForestClassifier(random_state = 0, class_weight="balanced")
rfe = RFE(estimator=rf, step=1)

现在通过适合X来变换原始的RFECV

X_new = rfe.fit_transform(X, y)

以下是排名的功能(只有4个功能没什么大问题):

rfe.ranking_
# array([2, 3, 1, 1])

现在分为训练数据和测试数据,并使用GridSearchCV(通常一起使用)结合网格搜索执行交叉验证:

X_train, X_test, y_train, y_test = train_test_split(X_new,y,train_size=0.7)

k_fold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

param_grid = {
                 'n_estimators': [5, 10, 15, 20],
                 'max_depth': [2, 5, 7, 9]
             }

grid_clf = GridSearchCV(rf, param_grid, cv=k_fold.split(X_train, y_train))
grid_clf.fit(X_train, y_train)

y_pred = grid_clf.predict(X_test)

confusion_matrix(y_test, y_pred)

array([[17,  0,  0],
       [ 0, 11,  0],
       [ 0,  3, 14]], dtype=int64)

答案 1 :(得分:1)

要将递归特征消除与预定义的k_fold结合使用,应使用RFE而不是RFECV

from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data
y = iris.target

k_fold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)
clf = RandomForestClassifier(random_state = 0, class_weight="balanced")
selector = RFE(clf, 5, step=1)

cv_acc = []

for train_index, val_index in k_fold.split(X, y):
    selector.fit(X[train_index], y[train_index])
    pred = selector.predict(X[val_index])
    acc = accuracy_score(y[val_index], pred)
    cv_acc.append(acc)

cv_acc
# result:
[1.0,
 0.9333333333333333,
 0.9333333333333333,
 1.0,
 0.9333333333333333,
 0.9333333333333333,
 0.8666666666666667,
 1.0,
 0.8666666666666667,
 0.9333333333333333]