我有四个变量(w,x,y和z)中的整数多项式,我知道这些变量可以写成这六个变量中的整数多项式:
如何使用Mathematica(或者Java)轻松更改变量?
答案 0 :(得分:15)
这种重写可以通过形成替换多项式的Groebner基础来完成,相对于有利于在w-z上使用a-f的变量阶数。然后使用PolynomialReduce
相对于相同的顺序来重写多项式。
这是一个例子。我将从替换规则开始,这样我就可以构造一个多项式,以便我们知道预期的结果。
reprules = {a -> w*z, b -> x*y, c -> (w^3 + z^3),
d -> (x + y), e -> (w^3*x + y*z^3), f -> (w^3*y + x*z^3)};
现在重铸为多项式关系。
reppolys = Apply[Subtract, reprules, 1];
这里我们创建一个例子。
poly =
a^2*b + 3*b^2*c^3 - 2*d*e*f + 11*b*f^2 - 5 a*d^2*e /. reprules // Expand
Out[11]= -2*w^6*x^2*y - 2*w^6*x*y^2 + 3*w^9*x^2*y^2 + 11*w^6*x*y^3 -
5*w^4*x^3*z - 10*w^4*x^2*y*z - 5*w^4*x*y^2*z + w^2*x*y*z^2 - 2*w^3*x^3*z^3 -
2*w^3*x^2*y*z^3 - 2*w^3*x*y^2*z^3 + 22*w^3*x^2*y^2*z^3 + 9*w^6*x^2*y^2*z^3 -
2*w^3*y^3*z^3 - 5*w*x^2*y*z^4 - 10*w*x*y^2*z^4 - 5*w*y^3*z^4 -
2*x^2*y*z^6 + 11*x^3*y*z^6 - 2*x*y^2*z^6 + 9*w^3*x^2*y^2*z^6 + 3*x^2*y^2*z^9
形成上述Groebner基础。
gb = GroebnerBasis[reppolys, {w, x, y, z, a, b, c, d, e, f}];
使用它来减少我们的输入以恢复预期结果。
PolynomialReduce[poly,
gb, {w, x, y, z, a, b, c, d, e, f}][[2]]
Out[12]= a^2*b + 3*b^2*c^3 - 5*a*d^2*e - 2*d*e*f + 11*b*f^2
--- ---编辑
评论询问Groebner基地的描述。对于我自己对Mathematica功能的看法,有一篇老年TMJ文章。可以在
找到http://library.wolfram.com/infocenter/Articles/2179/
与此主题相关的更好的书籍中有UTM系列文本
Cox,Lottle和O'Shea的理想,品种和算法。
Adams和Loustaunau(AMS)对GröbnerBases的介绍也非常好。
---结束编辑---
Daniel Lichtblau