如何将图像数据分为X_train,Y_train,X_test和Y_test?
我在使用带有tensorflow后端的keras
谢谢。
答案 0 :(得分:1)
您不必使用tensorflow或keras来划分数据集。 如果您已安装sklearn软件包,则只需使用它即可:
from klearn.model_selection import train_test_split
X = ...
Y = ...
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
您也可以将numpy用于相同目的:
import numpy
X = ...
Y = ...
test_size = 0.2
train_nsamples = (1-test_size) * len(Y)
x_train, x_test, y_train, y_test = X[:train_nsamples,:], X[train_nsamples:, :], Y[:train_nsamples, ], Y[train_nsamples:,]
祝你好运!
答案 1 :(得分:1)
例如,您拥有这样的文件夹
full_dataset
|--horse (40 images)
|--donkey (30 images)
|--cow ((50 images)
|--zebra (70 images)
第一路
import glob
horse = glob.glob('full_dataset/horse/*.*')
donkey = glob.glob('full_dataset/donkey/*.*')
cow = glob.glob('full_dataset/cow/*.*')
zebra = glob.glob('full_dataset/zebra/*.*')
data = []
labels = []
for i in horse:
image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB',
target_size= (280,280))
image=np.array(image)
data.append(image)
labels.append(0)
for i in donkey:
image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB',
target_size= (280,280))
image=np.array(image)
data.append(image)
labels.append(1)
for i in cow:
image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB',
target_size= (280,280))
image=np.array(image)
data.append(image)
labels.append(2)
for i in zebra:
image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB',
target_size= (280,280))
image=np.array(image)
data.append(image)
labels.append(3)
data = np.array(data)
labels = np.array(labels)
from sklearn.model_selection import train_test_split
X_train, X_test, ytrain, ytest = train_test_split(data, labels, test_size=0.2,
random_state=42)
第二种方式
image_generator = ImageDataGenerator(rescale=1/255, validation_split=0.2)
train_dataset = image_generator.flow_from_directory(batch_size=32,
directory='full_dataset',
shuffle=True,
target_size=(280, 280),
subset="training",
class_mode='categorical')
validation_dataset = image_generator.flow_from_directory(batch_size=32,
directory='full_dataset',
shuffle=True,
target_size=(280, 280),
subset="validation",
class_mode='categorical')
第二种方法的主要缺点,不能用于显示图片。如果您写validation_dataset[1]
,它将出错。但是,如果我使用第一种方法,它会起作用:X_test[1]