我正在尝试使用带烧瓶的rcnn检测形状。 但是出现了这个错误: 追溯(最近一次通话): 文件“ C:\ Users \ KushalM \ AppData \ Local \ Continuum \ anaconda3 \ lib \ site-packages \ tensorflow_core \ python \ framework \ ops.py”,行3505,在as_graph_element中 返回self._as_graph_element_ocked(obj,allow_tensor,allow_operation) 引发ValueError(“张量%s不是此图的元素。”%obj) ValueError:Tensor Tensor(“ mrcnn_detection / Reshape_1:0”,shape =(1,100,6),dtype = float32)不是此图的元素。
这是我的代码:
app.py
from flask import request, redirect
import os
from flask import Flask
from flask import render_template
import os
#import detect
from detect import getImage
app = Flask(__name__)
import os
import sys
import numpy as np
HOME_DIR = os.getcwd()
LIB_DIR = os.path.join(HOME_DIR, "libraries")
#os.chdir(LIB_DIR)
sys.path.insert(0, LIB_DIR)
#print(os.getcwd())
print(os.listdir('./libraries/'))
from mrcnn.config import Config
import mrcnn.utils as utils
import mrcnn.model as modellib
import mrcnn.visualize as visualize
from mrcnn.model import log
import skimage
import tensorflow as tf
from tensorflow.python.keras import backend as k
image_size = 64
rpn_anchor_template = (1, 2, 4, 8, 16) # anchor sizes in pixels
rpn_anchor_scales = tuple(i * (image_size // 16) for i in rpn_anchor_template)
class ShapesConfig(Config):
"""Configuration for training on the shapes dataset.
"""
NAME = "shapes"
# Train on 1 GPU and 2 images per GPU. Put multiple images on each
# GPU if the images are small. Batch size is 2 (GPUs * images/GPU).
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 4 # background + 3 shapes (triangles, circles, and squares)
# Use smaller images for faster training.
IMAGE_MAX_DIM = image_size
IMAGE_MIN_DIM = image_size
# Use smaller anchors because our image and objects are small
RPN_ANCHOR_SCALES = rpn_anchor_scales
# Aim to allow ROI sampling to pick 33% positive ROIs.
TRAIN_ROIS_PER_IMAGE = 32
STEPS_PER_EPOCH = 50
VALIDATION_STEPS = STEPS_PER_EPOCH / 20
config = ShapesConfig()
config.display()
class InferenceConfig(ShapesConfig):
GPU_COUNT = 1
IMAGES_PER_GPU = 1
inference_config = InferenceConfig()
MODEL_DIR = "./weights/mask_rcnn_coco.h5"
# Recreate the model in inference mode
model = modellib.MaskRCNN(mode="inference",
config=inference_config,
model_dir=MODEL_DIR)
# Get path to saved weights
# Either set a specific path or find last trained weights
# model_path = os.path.join(ROOT_DIR, ".h5 file name here")
#model_path = model.find_last()
ROOT = os.getcwd()
model_path = ROOT + "/weights/mask_rcnn_coco.h5"
# Load trained weights
print("Loading weights from ", model_path)
model.load_weights(model_path, by_name=True)
#graph = tf.get_default_graph()
class_names = ['BG', 'Std Paneer', 'Non Std Paneer', 'Std Chicken', 'Non Std Chicken']
#graph = tf.get_default_graph()
app.config["IMAGE_UPLOADS"] = './static'
@app.route("/upload-image", methods=["GET", "POST"])
def upload_image():
if request.method == "POST":
if request.files:
image = request.files["image"]
#print(image.shape)
image= getImage(image)
file = image.filename
image.save(os.path.join(app.config["IMAGE_UPLOADS"], image.filename))
print("Image saved")
return render_template("view.html", image_name = file)
return render_template("upload.html")
if __name__ == '__main__':
app.run(debug = True, use_reloader = False)
detect.py
def getImage(image):
image = skimage.io.imread(image)
print(image.shape)
#image = image.resize((64,64))
# Run detection
results = model.detect([image], verbose=1)
# Visualize results
r = results[0]
print(len(r['class_ids']))
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names,
r['scores'])
答案 0 :(得分:0)
更改为:
model.load_weights(model_path, by_name=True)
model.keras_model._make_predict_function()