我是Python的新手,为此我感到困惑。
我想创建许多新数据框,每个新数据框都来自现有数据框的列。原始格式为Time,x1,Time2,x2 ...
我已经找到了搜索“时间”的循环
for col in df.columns:
if 'Time' in col:
我需要调用找到的列及其旁边的列,并将其分配给具有['Time','x1']列的新数据框,然后为每对Timen&xn循环遍历。我想用xn命名数据帧。
感谢您的帮助。
答案 0 :(得分:1)
如果我正确解释了您的问题,我认为您想要的是import * as FBCommon from '@react-native-firebase/app/lib/common'
jest.mock(FBCommon, () => {
return () => ({
isBoolean: jest.fn(),
isNumber: jest.fn(),
isString: jest.fn()
})
});
。
如果您的数据框始终设置为jest.mock('@react-native-firebase/database', () => {
return () => ({
ref: jest.fn()
})
});
格式(例如,您一直在抓取连续的列以创建新的数据框),则可以使用以下操作:
{
"name": "Project",
"version": "0.0.1",
"private": true,
"scripts": {
"android": "react-native run-android",
"ios": "react-native run-ios",
"start": "react-native start",
"test": "jest",
"lint": "eslint ."
},
"dependencies": {
"@react-native-community/push-notification-ios": "^1.0.6",
"@react-native-firebase/app": "^6.3.1",
"@react-native-firebase/database": "^6.3.1",
"@react-native-firebase/messaging": "^6.3.1",
"axios": "^0.19.0",
"base-64": "^0.1.0",
"blinkid-react-native": "^5.2.0",
"firebase": "^7.6.0",
"lodash": "^4.17.15",
"mobx": "^5.15.0",
"mobx-persist": "^0.4.1",
"mobx-react": "^6.1.4",
"react": "16.9.0",
"react-native": "0.61.4",
"react-native-auth0": "^2.1.0",
"react-native-collapsible": "^1.5.1",
"react-native-config": "^0.12.0",
"react-native-confirmation-code-input": "^1.0.4",
"react-native-datepicker": "^1.7.2",
"react-native-device-info": "^5.4.1",
"react-native-elements": "^1.2.7",
"react-native-freshchat-sdk": "^2.3.0",
"react-native-gesture-handler": "^1.5.2",
"react-native-in-app-notification": "^3.0.1",
"react-native-keyboard-aware-scroll-view": "^0.9.1",
"react-native-phone-input": "^0.2.4",
"react-native-picker-select": "^6.3.3",
"react-native-push-notification": "^3.1.9",
"react-native-reanimated": "^1.4.0",
"react-native-screens": "^1.0.0-alpha.23",
"react-native-signature-capture": "^0.4.10",
"react-native-vector-icons": "^6.6.0",
"react-native-webview": "^8.0.3",
"react-navigation": "^4.0.10",
"react-navigation-stack": "^1.10.3"
},
"devDependencies": {
"@babel/core": "^7.7.2",
"@babel/runtime": "^7.7.2",
"@react-native-community/eslint-config": "^0.0.5",
"babel-jest": "^24.9.0",
"babel-plugin-module-resolver": "^4.0.0",
"chai": "^4.1.2",
"chai-enzyme": "1.0.0-beta.0",
"enzyme": "^3.3.0",
"enzyme-adapter-react-16": "^1.1.1",
"eslint": "^6.6.0",
"jest": "^24.9.0",
"jsdom": "15.2.1",
"jsdom-global": "3.0.2",
"metro-react-native-babel-preset": "^0.57.0",
"react-dom": "^16.12.0",
"react-test-renderer": "16.9.0",
"sinon": "^7.2.2"
},
"jest": {
"preset": "react-native",
"setupFilesAfterEnv": [
"./setUpTests.js"
],
"transformIgnorePatterns": [
"node_modules/(?!((jest-)?react-native|@react-native-firebase/database|@react-native-firebase/app|react-clone-referenced-element|expo(nent)?|@expo(nent)?/.*|react-navigation|@react-navigation/.*|sentry-expo|native-base))"
]
}
}
df.iloc[<row index>, <column index>]
中的Time1, x1, Time2, x2, ..., TimeN, xN
将选择所有行,而df_1 = df.iloc[ : , [0,1] ]
中的:
是所需的列索引列表。
然后您可以遍历原始数据框中的列数以获取每一对:
<row_index>