我试图用C ++用YOLO模型编写一个推理程序。我已经搜索了有关Darknet的一些信息,但是它必须使用.cfg文件来导入模型结构(这对我来说有点太复杂了...),因此我想使用tensorflow进行程序。
(我的模型权重从.hdf5(在python中使用)转换为.pb(在C ++中使用))
我发现了一些用python编写的示例,似乎它们在推理过程之前已经做了一些工作... Source
def yolo_eval(yolo_outputs,
anchors,
num_classes,
image_shape,
max_boxes=50,
score_threshold=.6,
iou_threshold=.5):
"""Evaluate YOLO model on given input and return filtered boxes."""
num_layers = len(yolo_outputs)
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] # default setting
input_shape = K.shape(yolo_outputs[0])[1:3] * 32
boxes = []
box_scores = []
for l in range(num_layers):
_boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
anchors[anchor_mask[l]], num_classes, input_shape, image_shape)
boxes.append(_boxes)
box_scores.append(_box_scores)
boxes = K.concatenate(boxes, axis=0)
box_scores = K.concatenate(box_scores, axis=0)
mask = box_scores >= score_threshold
max_boxes_tensor = K.constant(max_boxes, dtype='int32')
boxes_ = []
scores_ = []
classes_ = []
for c in range(num_classes):
# TODO: use keras backend instead of tf.
class_boxes = tf.boolean_mask(boxes, mask[:, c])
class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
nms_index = tf.image.non_max_suppression(
class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)
class_boxes = K.gather(class_boxes, nms_index)
class_box_scores = K.gather(class_box_scores, nms_index)
classes = K.ones_like(class_box_scores, 'int32') * c
boxes_.append(class_boxes)
scores_.append(class_box_scores)
classes_.append(classes)
boxes_ = K.concatenate(boxes_, axis=0)
scores_ = K.concatenate(scores_, axis=0)
classes_ = K.concatenate(classes_, axis=0)
return boxes_, scores_, classes_
我已经打印出返回值 看起来像这样
boxes-> Tensor(“ concat_11:0”,shape =(?, 4),dtype = float32)
得分-> Tensor(“ concat_12:0”,shape =(?,),dtype = float32)
classes-> Tensor(“ concat_13:0”,shape =(?,),dtype = int32)
我的YOLO模型(.hdf5)的原始输出是(我是通过打印出 model.output 得到的)
tf.Tensor'conv2d_59_1 / BiasAdd:0'shape =(?,?,?,21)dtype = float32
tf.Tensor'conv2d_67_1 / BiasAdd:0'shape =(?,?,?,21)dtype = float32
tf.Tensor'conv2d_75_1 / BiasAdd:0'shape =(?,?,?,21)dtype = float32
Python代码的推论部分是
out_boxes, out_scores, out_classes = sess.run(
[boxes, scores, classes],
feed_dict={
yolo_model.input: image_data,
input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
与推理代码的python版本相比, C ++部分是...(Reference)
int main()
{
string image = "test.jpg";
string graph = "yolo_weight.pb";
string labels = "coco.names";
int32 input_width = 416;
int32 input_height = 416;
float input_mean = 0;
float input_std = 255;
string input_layer = "input_1:0";
std::vector<std::string> output_layer = {"conv2d_59/BiasAdd:0", "conv2d_67/BiasAdd:0", "conv2d_75/BiasAdd:0" };
std::unique_ptr<tensorflow::Session> session;
string graph_path = tensorflow::io::JoinPath(root_dir, graph);
Status load_graph_status = LoadGraph(graph_path, &session);
std::vector<Tensor> resized_tensors;
string image_path = tensorflow::io::JoinPath(root_dir, image);
Status read_tensor_status = ReadTensorFromImageFile(image_path, input_height, input_width,
input_mean, input_std, &resized_tensors);
Tensor inpTensor = Tensor(DT_FLOAT, TensorShape({ 1, input_height, input_width, 3 }));
std::vector<Tensor> outputs;
cv::Mat srcImage = cv::imread(image);
cv::resize(srcImage, srcImage, cv::Size(input_width, input_height));
srcImage.convertTo(srcImage, CV_32FC3);
srcImage = srcImage / 255;
string ty = type2str(srcImage.type());
float *p = (&inpTensor)->flat<float>().data();
cv::Mat tensorMat(input_height, input_width, CV_32FC3, p);
srcImage.convertTo(tensorMat, CV_32FC3);
Status run_status = session->Run({{ input_layer, inpTensor }}, { output_layer }, {}, &outputs);
int cc = 1;
auto output_detection_class = outputs[0].tensor<float, 4>();
std::cout << "detection scores" << std::endl;
std::cout << "typeid(output_detection_scoreclass).name->" << typeid(output_detection_class).name() << std::endl;
for (int i = 0; i < 13; ++i)
{
for (int j = 0; j < 13; ++j)
{
for (int k = 0; k < 21; ++k)
{
// using (index_1, index_2, index_3) to access the element in a tensor
printf("i->%d, j->%d, k->%d\t", i, j, k);
std::cout << output_detection_class(1, i, j, k) << "\t";
cc += 1;
if (cc % 4 == 0)
{
std::cout << "\n";
}
}
}
std::cout << std::endl;
}
return 0;
}
c ++版本推断部分的输出是
outputs.size()-> 3
outputs [0] .shape()-> [1,13,13,21]
outputs [1] .shape()-> [1,26,26,21]
outputs [2] .shape()-> [1,52,52,21]
但是我得到的输出很奇怪...
(outputs [0]的输出值似乎不是分数,类或坐标中的任何一个...)
所以我想知道这是因为我在推断之前错过了用python编写的部分吗?还是我使用错误的方式获取输出数据?
我已经检查了一些相关的问题和答案...
1.Yolo v3 model output clarification with keras
2.Convert YoloV3 output to coordinates of bounding box, label and confidence
3.How to access tensorflow::Tensor C++
但是我仍然不知道该怎么做:(
我还发现了一个repo可能会有所帮助, 我看过它的 yolo.cpp ,但是它的模型输出张量的形状与我的不同,我不确定是否可以直接修改代码,它的输出张量是
tf.Tensor'import / output:0'shape =(?, 735)dtype = float32
感谢任何帮助或建议...
答案 0 :(得分:0)
如果您仍在为此苦苦挣扎,我看不到您将Sigmoid和Exp应用于输出图层值的地方。
您可能会看这篇介绍如何处理输出的论文。
https://medium.com/analytics-vidhya/yolo-v3-theory-explained-33100f6d193
答案 1 :(得分:0)
正如 Bryan 所说,输出层仍有一些操作需要完成。
因此,在我的情况下(根据 this repo),我将其添加到 YOLO 类(在文件 yolo.py
中)以在保存模型时添加这些后处理:
def output_pb(self, out_dir, out_pb):
out_bx = self.boxes.name.split(":")[0]
out_sc = self.scores.name.split(":")[0]
out_cs = self.classes.name.split(":")[0]
print(out_bx, out_sc, out_cs)
frozen_graph = tf.graph_util.remove_training_nodes(tf.graph_util.convert_variables_to_constants(self.sess, self.sess.graph.as_graph_def(), [out_bx, out_sc, out_cs]))
tf.io.write_graph(frozen_graph, out_dir, out_pb, as_text=False)
print("===== FINISH saving new pb file =====")
保存模型时,我这样调用函数:
yolo = YOLO(**config)
yolo.output_pb(output_dir, output_pb_name)
在 C++ 中进行推理时, 整个过程是这样的:
// initialize model
YOLO* YOLO_data = (YOLO*)Init_DllODM_object(config);
// do some stuff to set data in YOLO_data
cv::Mat input_pic = "whatever_pic.png";
predict(YOLO_data, input_pic, YOLO_data ->bbox_res, YOLO_data ->score_res, YOLO_data ->class_res);
// draw result on pic
cv::Mat res = show_result(YOLO_data, input_pic);
详细代码在这里:
// yolo_cpp.h
struct YOLO
{
float score_thres;
std::vector<int> class_res;
std::vector<float> bbox_res, score_res;
std::string inp_tensor_name;
std::string placeholder_name;
std::vector<std::string> out_tensors;
Session* session;
Tensor t, inpTensor;
std::vector<tensorflow::Tensor> outTensor;
std::vector<int> MD_size;
std::vector<int> inp_pic_size;
std::vector<std::string> md_class_list;
std::vector<cv::Scalar> color_list;
int show_score;
int score_type;
int return_origin;
};
// yolo_cpp.cpp
void* Init_DllODM_object(json config)
{
std::string model_path = config["model"].get<std::string>();
YOLO* YOLO_data = new YOLO();
auto options = tensorflow::SessionOptions();
GraphDef graphdef;
// loading model to graph
Status status_load = ReadBinaryProto(Env::Default(), model_path, &graphdef);
options.config.mutable_gpu_options()->set_per_process_gpu_memory_fraction(0.7);
options.config.mutable_gpu_options()->set_allow_growth(true);
int node_count = graphdef.node_size();
for (int i = 0; i < node_count; i++)
{
auto n = graphdef.node(i);
if (n.name().find("input_") != string::npos)
{
YOLO_data->inp_tensor_name = n.name();
}
else if (n.name().find("Placeholder_") != string::npos)
{
YOLO_data->placeholder_name = n.name();
}
else if (i == node_count - 5)
{
YOLO_data->out_tensors.push_back(n.name());
}
else if (i == node_count - 3)
{
YOLO_data->out_tensors.push_back(n.name());
}
else if (i == node_count - 1)
{
YOLO_data->out_tensors.push_back(n.name());
}
}
if (!status_load.ok()) {
std::cout << "ERROR: Loading model failed..." << std::endl;
std::cout << model_path << status_load.ToString() << "\n";
}
std::vector<int> MD_size_ = config["input_size"];
YOLO_data->MD_size = MD_size_;
std::vector<int> inp_pic_size_ = config["input_pic_size"];
YOLO_data->inp_pic_size = inp_pic_size_;
YOLO_data->inpTensor = Tensor(DT_FLOAT, TensorShape({ 1, YOLO_data->MD_size[0], YOLO_data->MD_size[1], 3 })); // input tensor
YOLO_data->t = Tensor(DT_FLOAT, TensorShape({ 2 }));
//ref: https://stackoverflow.com/questions/36804714/define-a-feed-dict-in-c-for-tensorflow-models
auto t_matrix = YOLO_data->t.tensor<float, 1>();
t_matrix(0) = YOLO_data->inp_pic_size[0];
t_matrix(1) = YOLO_data->inp_pic_size[1];
// create session
Status status_newsess = NewSession(options, &YOLO_data->session); //for the usage of gpu setting
Status status_create = YOLO_data->session->Create(graphdef);
if (!status_create.ok()) {
std::cout << "ERROR: Creating graph in session failed.." << status_create.ToString() << std::endl;
}
else {
std::cout << "----------- Successfully created session and load graph -------------" << std::endl;
}
return YOLO_data;
}
int predict(YOLO* YOLO_, cv::Mat srcImage, std::vector<float>& bbox_res, std::vector<float>& score_res, std::vector<int>& class_res)
{
// read image -> input image
if (srcImage.empty()) // check if image can open correctly
{
std::cout << "can't open the image!!!!!!!" << std::endl;
int res = -1;
return res;
}
// ref: https://ppt.cc/f7ERNx
std::vector<std::pair<string, tensorflow::Tensor>> inputs = {
{ YOLO_->inp_tensor_name, YOLO_->inpTensor },
{ YOLO_->placeholder_name, YOLO_->t },
};
srcImage = letterbox_image(srcImage, YOLO_->MD_size[0], YOLO_->MD_size[1]);
convertCVMatToTensor(YOLO_, srcImage);
Status status_run = YOLO_->session->Run({ inputs }, { YOLO_->out_tensors }, {}, &YOLO_->outTensor);
if (!status_run.ok()) {
std::cout << "ERROR: RUN failed..." << std::endl;
std::cout << status_run.ToString() << "\n";
int res = -1;
return res;
}
TTypes<float>::Flat pp1 = YOLO_->outTensor[0].flat<float>();
TTypes<float>::Flat pp2 = YOLO_->outTensor[1].flat<float>();
TTypes<int>::Flat pp3 = YOLO_->outTensor[2].flat<int>();
int pp1_idx;
for (int i = 0; i < pp2.size(); i++)
{
pp1_idx = i * 4;
bbox_res.push_back(pp1(pp1_idx));
bbox_res.push_back(pp1(pp1_idx + 1));
bbox_res.push_back(pp1(pp1_idx + 2));
bbox_res.push_back(pp1(pp1_idx + 3));
score_res.push_back(pp2(i));
class_res.push_back(pp3(i));
}
return 0;
}
cv::Mat show_result(YOLO* inf_obj, cv::Mat inp_pic)
{
int bbox_idx;
std::string plot_str;
bool under_thresh = false;
std::vector<int> del_idx;
for (int i = 0; i < inf_obj->class_res.size(); i++)
{
int y_min, y_max, x_min, x_max;
bbox_idx = i * 4;
y_min = std::max(0, (int)floor(inf_obj->bbox_res[bbox_idx] + 0.5));
x_min = std::max(0, (int)floor(inf_obj->bbox_res[bbox_idx + 1] + 0.5));
y_max = std::max(0, (int)floor(inf_obj->bbox_res[bbox_idx + 2] + 0.5));
x_max = std::max(0, (int)floor(inf_obj->bbox_res[bbox_idx + 3] + 0.5));
//std::cout << md_class_list[class_res[i]] << ", ";
//std::cout << score_res[i] << ",";
//std::cout << "[" << x_min << ", " << y_min << ", " << x_max << ", " << y_max << "]\n";
if (inf_obj->show_score)
{
if (inf_obj->score_type)
plot_str = inf_obj->md_class_list[inf_obj->class_res[i]] + ", " + std::to_string(rounding(inf_obj->score_res[i] * 100, 2)).substr(0, 5) + "%";
else
plot_str = inf_obj->md_class_list[inf_obj->class_res[i]] + ", " + std::to_string(rounding(inf_obj->score_res[i], 2)).substr(0, 4);
}
else
plot_str = inf_obj->md_class_list[inf_obj->class_res[i]];
if (inf_obj->score_res[i] >= inf_obj->score_thres)
{
inp_pic = plot_one_box(inp_pic, x_min, y_min, x_max, y_max, plot_str, inf_obj->color_list[inf_obj->class_res[i]]);
}
else
{
//std::cout << "score_res[i]->" << score_res[i] << "under thresh!!" << std::endl;
under_thresh = true;
del_idx.push_back(i);
}
}
if (under_thresh)
{
//std::cout << "*** deleting element" << std::endl;
for (int x = 0; x < del_idx.size(); x++)
{
bbox_idx = (del_idx[x] - x) * 4;
inf_obj->bbox_res.erase(inf_obj->bbox_res.begin() + bbox_idx + 3);
inf_obj->bbox_res.erase(inf_obj->bbox_res.begin() + bbox_idx + 2);
inf_obj->bbox_res.erase(inf_obj->bbox_res.begin() + bbox_idx + 1);
inf_obj->bbox_res.erase(inf_obj->bbox_res.begin() + bbox_idx);
inf_obj->score_res.erase(inf_obj->score_res.begin() + del_idx[x] - x);
inf_obj->class_res.erase(inf_obj->class_res.begin() + del_idx[x] - x);
}
del_idx.clear();
}
return inp_pic;
}
由于我的代码是用于dll的,所以我是这样安排的。 还有一些多余的代码我没有删除, 但我认为到目前为止,可以使用这些提供的代码完成整个过程。 希望这有助于:D