现在,我已经训练了一个非常简单的神经网络来获取正弦函数模型,但是如何使用该模型进行预测呢?就像如果我输入x = 3.14,那么我将得到零或其他值。 在代码中,我定义了add_layer函数,并存储了变量。现在,如果我恢复变量,如何从特定输入获得输出? 我搜索了很多信息,但无法弄清楚。
import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.sin(x_data) + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
saver = tf.train.Saver()
isTrain = True
with tf.Session() as sess:
if isTrain:
sess.run(init)
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
print(sess.run(ys, feed_dict={xs:x_data}))
saver.save(sess,"sin/net.ckpt")
else:
saver.restore(sess, "sin/net.ckpt")