上一个问题的继续:Tensorflow - TypeError: 'int' object is not iterable
我的训练数据是一个列表列表,每个列表包含1000个浮点数。例如,x_train[0] =
[0.0, 0.0, 0.1, 0.25, 0.5, ...]
这是我的模特:
model = Sequential()
model.add(LSTM(128, activation='relu',
input_shape=(1000, 1), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
opt = tf.keras.optimizers.Adam(lr=1e-3, decay=1e-5)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))
这是我遇到的错误:
Traceback (most recent call last):
File "C:\Users\bencu\Desktop\ProjectFiles\Code\Program.py", line 88, in FitModel
model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 728, in fit
use_multiprocessing=use_multiprocessing)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 224, in fit
distribution_strategy=strategy)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 547, in _process_training_inputs
use_multiprocessing=use_multiprocessing)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 606, in _process_inputs
use_multiprocessing=use_multiprocessing)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 479, in __init__
batch_size=batch_size, shuffle=shuffle, **kwargs)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 321, in __init__
dataset_ops.DatasetV2.from_tensors(inputs).repeat()
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\ops\dataset_ops.py", line 414, in from_tensors
return TensorDataset(tensors)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\ops\dataset_ops.py", line 2335, in __init__
element = structure.normalize_element(element)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\util\structure.py", line 111, in normalize_element
ops.convert_to_tensor(t, name="component_%d" % i))
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1184, in convert_to_tensor
return convert_to_tensor_v2(value, dtype, preferred_dtype, name)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1242, in convert_to_tensor_v2
as_ref=False)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1296, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\tensor_conversion_registry.py", line 52, in _default_conversion_function
return constant_op.constant(value, dtype, name=name)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 227, in constant
allow_broadcast=True)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 235, in _constant_impl
t = convert_to_eager_tensor(value, ctx, dtype)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 96, in convert_to_eager_tensor
return ops.EagerTensor(value, ctx.device_name, dtype)
ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type float).
我自己尝试过搜索错误,我发现了一些有关使用tf.convert_to_tensor
函数的信息。我试图通过它来传递训练和测试列表,但是该功能不会接受它们。
任何帮助将不胜感激。谢谢。
答案 0 :(得分:40)
在尝试了上述所有方法均未成功后,我发现我的问题是数据中的一列具有boolean
值。将所有内容转换为np.float32
即可解决问题!
import numpy as np
X = np.asarray(X).astype(np.float32)
答案 1 :(得分:7)
这是一个极具误导性的错误,因为这基本上是一个普遍的错误,可能与浮点数无关。
例如,在我的情况下,这是由其中包含一些np.NaN
值的pandas数据帧的字符串列引起的。走吧!
通过将其替换为空字符串来解决:
df.fillna(value='', inplace=True)
或者更具体地说,仅对字符串(例如“对象”)列执行此操作:
cols = df.select_dtypes(include=['object'])
for col in cols.columns.values:
df[col] = df[col].fillna('')
答案 2 :(得分:4)
也可能由于版本不同而发生(为了解决此问题,我不得不从tensorflow 2.1.0移回2.0.0.beta1)。
答案 3 :(得分:2)
问题的根源是使用 lists 作为输入,而不是Numpy数组。 Keras / TF不支持前者。一个简单的转换是:x_array = np.asarray(x_list)
。
下一步是确保以预期的格式输入数据;对于LSTM,将是尺寸为(batch_size, timesteps, features)
或等效为(num_samples, timesteps, channels)
的3D张量。最后,作为调试提示,打印所有形状的数据。完成上述所有任务的代码如下:
Sequences = np.asarray(Sequences)
Targets = np.asarray(Targets)
show_shapes()
Sequences = np.expand_dims(Sequences, -1)
Targets = np.expand_dims(Targets, -1)
show_shapes()
# OUTPUTS
Expected: (num_samples, timesteps, channels)
Sequences: (200, 1000)
Targets: (200,)
Expected: (num_samples, timesteps, channels)
Sequences: (200, 1000, 1)
Targets: (200, 1)
作为一个提示,我注意到您正在通过main()
运行,因此您的IDE可能缺少类似于Jupyter的基于单元的执行;我强烈推荐Spyder IDE。就像添加# In[]
,然后按下面的Ctrl + Enter
一样简单:
使用的功能:
def show_shapes(): # can make yours to take inputs; this'll use local variable values
print("Expected: (num_samples, timesteps, channels)")
print("Sequences: {}".format(Sequences.shape))
print("Targets: {}".format(Targets.shape))
答案 4 :(得分:1)
我有许多不同的输入和目标变量,但不知道是哪个引起了问题。
要找出中断变量的位置,您可以使用堆栈strace中指定的路径在库包中添加打印值:
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 96, in convert_to_eager_tensor
return ops.EagerTensor(value, ctx.device_name,
在代码的这一部分中添加一个print
语句,使我能够查看导致问题的输入:
constant_op.py
:
....
dtype = dtype.as_datatype_enum
except AttributeError:
dtype = dtypes.as_dtype(dtype).as_datatype_enum
ctx.ensure_initialized()
print(value) # <--------------------- PUT PRINT HERE
return ops.EagerTensor(value, ctx.device_name, dtype)
观察到哪个值是有问题的,从int
到astype(np.float32)
的转换解决了问题。
答案 5 :(得分:1)
您可能要检查输入数据集或数组中的数据类型,然后将其转换为float32
:
train_X[:2, :].view()
#array([[4.6, 3.1, 1.5, 0.2],
# [5.9, 3.0, 5.1, 1.8]], dtype=object)
train_X = train_X.astype(np.float32)
#array([[4.6, 3.1, 1.5, 0.2],
# [5.9, 3. , 5.1, 1.8]], dtype=float32)
答案 6 :(得分:0)
您最好使用它,这是因为keras版本不兼容
test'
答案 7 :(得分:0)
这应该可以解决问题:
x_train = np.asarray(x_train).astype(np.float32)
y_train = np.asarray(y_train).astype(np.float32)
答案 8 :(得分:0)
如果您使用的是 DataFrame 并且具有多个列类型,请使用此选项:
numeric_list = df.select_dtypes(include=[np.number]).columns
df[numeric_list] = df[numeric_list].astype(np.float32)
答案 9 :(得分:0)
尝试将 np.float32 转换为 tf.float32(读取 keras 和 tensorflow 的数据类型):
tf.convert_to_tensor(X_train, dtype=tf.float32)