正如Stephen Toub在this post中所述,当您向ActionBlock提交消息时,可以在调用ActionBlock.Post之前先执行ExecutionContext.Capture,然后将包含消息和ExecutionContext的DTO传递到块中,然后在消息内部使用ExecutionContext.Run处理委托,可以在捕获的上下文上运行委托:
public sealed class ContextFlowProcessor<T> {
private struct MessageState {
internal ExecutionContext Context;
internal T Value;
}
private readonly ITargetBlock<MessageState> m_block;
public ContextFlowProcessor(Action<T> action) {
m_block = new ActionBlock<MessageState>(ms =>
{
if (ms.Context != null)
using (ms.Context) ExecutionContext.Run(ms.Context, s => action((T)s), ms.Value);
else
action(ms.Value);
});
}
public bool Post(T item) {
var ec = ExecutionContext.Capture();
var rv = m_block.Post(new MessageState { Context = ec, Value = item });
if (!rv) ec.Dispose();
return rv;
}
public void Done() { m_block.DeclinePermanently(); }
public Task CompletionTask { get { return m_block.CompletionTask; } }
当消息处理程序内部的逻辑是同步的时,此方法效果很好。但是,如何在捕获的ExecutionContext上运行 async 逻辑呢?我需要这样的东西:
m_block = new ActionBlock<MessageState>(async ms =>
{
// omitting the null context situation for brevity
using (ms.Context)
{
await ExecutionContext.Run(ms.Context, async _ => { callSomethingAsync(ms.Value) });
}
});
很明显,由于ExecutionContext.Run不支持异步委托(而ActionBlock却支持),因此无法编译。
答案 0 :(得分:2)
如果您可以提供一个独立的示例,以便我们尝试重现该问题,我们也许可以提供更好的答案。也就是说,可以使用简单的自定义同步上下文在整个ExecutionContext
连续范围内手动控制await
(或它的副本)的流。这是一个示例(警告-几乎未经测试!):
// using EcFlowingSynchronizationContext:
m_block = new ActionBlock<MessageState>(async ms =>
{
using (ms.Context)
using (var sc = new EcFlowingSynchronizationContext(ms.Context))
{
await sc.Run(async _ => { await callSomethingAsync(ms.Value); });
}
});
// EcFlowingSynchronizationContext: flow execution context manually
public class EcFlowingSynchronizationContext : SynchronizationContext, IDisposable
{
private readonly ExecutionContext _ec;
private readonly TaskScheduler _taskScheduler;
public EcFlowingSynchronizationContext(ExecutionContext sourceEc)
{
TaskScheduler ts = null;
ExecutionContext ec = null;
ExecutionContext.Run(sourceEc, _ =>
{
var sc = SynchronizationContext.Current;
SynchronizationContext.SetSynchronizationContext(this);
try
{
ts = TaskScheduler.FromCurrentSynchronizationContext();
// this will also capture SynchronizationContext.Current,
// and it will be flown by subsequent ExecutionContext.Run
ec = ExecutionContext.Capture();
}
finally
{
SynchronizationContext.SetSynchronizationContext(sc);
}
}, null);
_ec = ec;
_taskScheduler = ts;
}
private void Execute(SendOrPostCallback d, object state)
{
using (var ec = _ec.CreateCopy())
{
ExecutionContext.Run(ec, new ContextCallback(d), state);
}
}
public Task Run(Func<Task> action, CancellationToken token = default(CancellationToken))
{
return Task.Factory.StartNew(action, token, TaskCreationOptions.None, _taskScheduler).Unwrap();
}
public Task<TResult> Run<TResult>(Func<Task<TResult>> action, CancellationToken token = default(CancellationToken))
{
return Task.Factory.StartNew(action, token, TaskCreationOptions.None, _taskScheduler).Unwrap();
}
public override void Post(SendOrPostCallback d, object state)
{
ThreadPool.UnsafeQueueUserWorkItem(s => Execute(d, s), state);
}
public override void Send(SendOrPostCallback d, object state)
{
Execute(d, state);
}
public override SynchronizationContext CreateCopy()
{
return this;
}
public void Dispose()
{
_ec.Dispose();
}
}
请注意,您只能使用CallContext.LogicalSetData
(或AsyncLocal<T>
)存储不可变值。即,如果您需要存储在从被调用方到调用方的异步流期间可能更改的内容,并且能够在调用方中跟踪该更改,请将其设置为类的属性,然后存储该类的实例。确保该类也是线程安全的,因为最终您可以拥有许多原始执行上下文的并发派生。
有关更多详细信息,请参阅Stephen Cleary出色的Implicit Async Context ("AsyncLocal")和"Eliding Async and Await"。