我目前正在从事植物病原体的相互作用,并正在尝试使用RNA-seq数据建立基因共表达网络。我使用HTseq-count来获取读取计数。
我的数据集包含在3个时间点采集的经过Resis_治疗(第1天,第3天和第7天)的样本,每个时间点重复2次。我有一个3级的因素
我正在尝试获取Day3VsDay1,Day7VsDay1和Day7Vs_Day3之间的DEG。
运行代码后,为了获得所有的成对比较,我使用lfcShrink()并使用了对比度=选项3次。
我试图对比day7VsDay3数据。但是它显示了如下错误
day73 <- lfcShrink(dds, contrast=c("condition", "day7", "day3"))
Error in cleanContrast(object, contrast, expanded = isExpanded, listValues = listValues, : day7 and day3 should be levels of condition such that condition_day7_vs_Day1 and condition_day3_vs_Day1 are contained in 'resultsNames(object)'
请帮助我解决错误。
在sampleCondition和coldata行中定义级别是否存在任何错误**
如何获得所有级别的所有成对组合,尤其是Day7vsDay3以及其他两个组合
我使用的代码如下
condition are
Day1
Day1
Day3
Day3
Day7
Day7
library(DESeq2)
directory<-'D:/test_deseq/tempora'
sampleFiles<-grep('Day',list.files(directory),value=TRUE)
sampleCondition<-c('Day1','Day1','Day3','Day3', 'Day7','Day7')
sampleTable<-data.frame(sampleName=sampleFiles, fileName=sampleFiles, condition=sampleCondition)
ddsHTSeq<-DESeqDataSetFromHTSeqCount(sampleTable=sampleTable, directory=directory, design=~condition)
colData(ddsHTSeq)$condition<-factor(colData(ddsHTSeq)$condition, levels=c('Day1','Day3','Day7'))
colData(ddsHTSeq)
ddsHTSeq <- ddsHTSeq[ rowSums(counts(ddsHTSeq)) > 1, ]
ddsHTSeq
dds <- DESeq(ddsHTSeq)
resultsNames(dds)
[1] "Intercept" "conditionDay3vsDay1" "conditionDay7vsDay1"
day73 <- lfcShrink(dds, contrast=c("condition", "day7", "day3"))
Error in cleanContrast(object, contrast, expanded = isExpanded, listValues = listValues, : day7 and day3 should be levels of condition such that condition_day7_vs_Day1 and condition_day3_vs_Day1 are contained in 'resultsNames(object)'